Chapter 8

LINEAR TRANSFORMATIONS
ON HILBERT SPACES

8.1. Adjoint Transformations

We begin with a result which is a consequence of the Riesz-Fréchet theorem first studied in Section 6.3.

Theorem 8A. Suppose that \(V \) and \(W \) are Hilbert spaces over \(F \). For every linear transformation \(T \in B(V,W) \), there exists a unique linear transformation \(T^* \in B(W,V) \) such that

\[
\langle T(x), y \rangle = \langle x, T^*(y) \rangle \quad \text{for every } x \in V \text{ and } y \in W.
\]

Remark. Note that in the above, \(\langle T(x), y \rangle \) is an inner product in the Hilbert space \(W \), while \(\langle x, T^*(y) \rangle \) is an inner product in the Hilbert space \(V \).

Definition. Suppose that \(V \) and \(W \) are Hilbert spaces over \(F \). The unique linear transformation \(T^* \in B(W,V) \) satisfying the conclusion of Theorem 8A is called the adjoint transformation of the linear transformation \(T \in B(V,W) \).

Proof of Theorem 8A. Suppose that \(y \in W \) is fixed. It is easy to check that the mapping \(S : V \to F \), given for every \(x \in V \) by \(S(x) = \langle T(x), y \rangle \), is a linear functional on \(V \). Furthermore, we have

\[
|S(x)| = |\langle T(x), y \rangle| \leq \|T(x)\| \|y\| \leq \|T\| \|x\| \|y\| = (\|T\| \|y\|) \|x\| \quad \text{for every } x \in V,
\]

so that \(S : V \to F \) is a bounded, and continuous, linear functional on \(V \). It follows from the Riesz-Fréchet theorem that there exists a unique \(u \in V \) such that \(S(x) = \langle x, u \rangle \) for every \(x \in V \). Write \(u = T^*(y) \). Then \(T^* : W \to V \) is a mapping satisfying

\[
\langle T(x), y \rangle = \langle x, T^*(y) \rangle \quad \text{for every } x \in V \text{ and } y \in W.
\]
Next we show that $T^* \in B(W, V)$. Suppose first of all that $y, z \in W$ and $c \in \mathbb{F}$. Then for every $x \in V$, we have
\[
\langle x, T^*(y + z) \rangle = \langle T(x), y + z \rangle = \langle T(x), y \rangle + \langle T(x), z \rangle \\
= \langle x, T^*(y) \rangle + \langle x, T^*(z) \rangle = \langle x, T^*(y) + T^*(z) \rangle
\]
and
\[
\langle x, T^*(cy) \rangle = \langle T(x), cy \rangle = \tau(T(x), y) = \tau(x, T^*(y)) = \langle x, cT^*(y) \rangle,
\]
so that $T^*(y + z) = T^*(y) + T^*(z)$ and $T^*(cy) = cT^*(y)$ by Theorem 4B. It follows that $T^*: W \to V$ is a linear transformation. Furthermore, for every $y \in W$, we have
\[
\|T^*(y)\|^2 = \langle T^*(y), T^*(y) \rangle = \langle T(T^*(y)), y \rangle \leq \|T(T^*(y))\| \|y\| \leq \|T\| \|T^*(y)\| \|y\|.
\]
Suppose that $\|T^*(y)\| > 0$. Then dividing the above by $\|T^*(y)\|$, we obtain $\|T^*(y)\| \leq \|T\| \|y\|$. Note that this last inequality is satisfied trivially if $\|T^*(y)\| = 0$. It follows that
\[
\|T^*(y)\| \leq \|T\| \|y\| \quad \text{for every } y \in W,
\]
and so $T^*: W \to V$ is bounded, whence $T^* \in B(W, V)$. Finally, suppose that $T_1, T_2 \in B(W, V)$ satisfy
\[
\langle T(x), y \rangle = \langle x, T_1(y) \rangle = \langle x, T_2(y) \rangle \quad \text{for every } x \in V \text{ and } y \in W.
\]
Then it follows from Theorem 4B that $T_1(y) = T_2(y)$ for every $y \in W$, so that $T_1 = T_2$. The uniqueness of $T^* \in B(W, V)$ follows immediately. \(\Box\)

Example 8.1.1. Suppose that $a, b \in \mathbb{R}$ and $a < b$. Consider the vector space $L^2[a, b]$ of all complex valued Lebesgue measurable functions that are square integrable on $[a, b]$. We know that the norm
\[
\|f\| = \left(\int_a^b |f(t)|^2 \, dt \right)^{1/2},
\]
given in Example 7.1.3, is in fact induced by the inner product
\[
\langle f, g \rangle = \left(\int_a^b f(t) g(t) \, dt \right)^{1/2}.
\]
Let $\phi \in C[a, b]$ be chosen and fixed, and consider the bounded linear operator $T : L^2[a, b] \to L^2[a, b]$, where for every $f \in L^2[a, b]$, the function $T(f) \in L^2[a, b]$ is defined by
\[
(T(f))(t) = \phi(t) f(t) \quad \text{for every } t \in [a, b],
\]
as discussed in Example 7.1.3. It follows from Theorem 8A that the adjoint operator T^* satisfies
\[
\langle T(f), g \rangle = \langle f, T^*(g) \rangle \quad \text{for every } f, g \in L^2[a, b].
\]
In other words, we must have
\[
\int_a^b \phi(t) f(t) \overline{g(t)} \, dt = \int_a^b f(t) \overline{(T^*(g))(t)} \, dt \quad \text{for every } f, g \in L^2[a, b].
\]
Clearly
\[
(T^*(g))(t) = \overline{\phi(t) g(t)} \quad \text{for every } t \in [a, b]
\]
would be sufficient. Hence by uniqueness, the adjoint operator $T^*: L^2[a, b] \to L^2[a, b]$ is given for every $g \in L^2[a, b]$ by this.
Example 8.1.2. Suppose that $a, b, c, d \in \mathbb{R}$, with $a < b$ and $c < d$. Consider the vector spaces $L^2[a, b]$ and $L^2[c, d]$. We know that the respective norms

$$
\|f\| = \left(\int_a^b |f(t)|^2 \, dt \right)^{1/2} \quad \text{and} \quad \|h\| = \left(\int_c^d |h(s)|^2 \, ds \right)^{1/2},
$$
given in Example 7.1.4, are in fact induced by the respective inner products

$$
\langle f, g \rangle = \left(\int_a^b f(t)\overline{g(t)} \, dt \right)^{1/2} \quad \text{and} \quad \langle h, k \rangle = \left(\int_c^d h(s)\overline{k(s)} \, ds \right)^{1/2}.
$$

Let $\phi : [c, d] \times [a, b] \rightarrow \mathbb{C}$ be a fixed continuous function, and consider the bounded linear transformation $T : L^2[a, b] \rightarrow L^2[c, d]$, where for every $f \in L^2[a, b]$, the function $T(f) \in L^2[c, d]$ is defined by

$$
(T(f))(s) = \int_a^b \phi(s,t) f(t) \, dt \quad \text{for every } s \in [c, d],
$$
as discussed in Example 7.1.4. It follows from Theorem 8A that the adjoint operator T^* satisfies

$$
\langle T(f), k \rangle = \langle f, T^*(k) \rangle \quad \text{for every } f \in L^2[a, b] \text{ and } k \in L^2[c, d].
$$

In other words, we must have

$$
\int_c^d \left(\int_a^b \phi(s,t) f(t) \, dt \right) \overline{k(s)} \, ds = \int_a^b f(t) (T^*(k))(t) \, dt \quad \text{for every } f \in L^2[a, b] \text{ and } k \in L^2[c, d].
$$

By Fubini’s theorem, clearly

$$
(T^*(k))(t) = \int_c^d \phi(s,t) k(s) \, ds \quad \text{for every } t \in [a, b]
$$

would be sufficient. Hence by uniqueness, the adjoint transformation $T^* : L^2[c, d] \rightarrow L^2[a, b]$ is given for every $k \in L^2[c, d]$ by this.

8.2. Hermitian Operators

We conclude our discussion by studying a special type of adjoint operators.

Definition. Suppose that V is a Hilbert space over \mathbb{F}. A linear operator $T \in L(V)$ is said to be self-adjoint or Hermitian if $T^* = T$.

Example 8.2.1. Suppose that $a, b \in \mathbb{R}$ and $a < b$. Consider the Hilbert space $L^2[a, b]$ of all complex valued Lebesgue measurable functions that are square integrable on $[a, b]$, as discussed in Example 8.1.1. Let $\phi \in C[a, b]$ be chosen and fixed. For the bounded linear operator $T : L^2[a, b] \rightarrow L^2[a, b]$, where for every $f \in L^2[a, b]$, the function $T(f) \in L^2[a, b]$ is defined by $(T(f))(t) = \phi(t)f(t)$ for every $t \in [a, b]$, we have shown earlier that the adjoint operator $T^* : L^2[a, b] \rightarrow L^2[a, b]$ is given for every $g \in L^2[a, b]$ by $(T^*(g))(t) = \overline{\phi(t)}g(t)$ for every $t \in [a, b]$. Hence $T : L^2[a, b] \rightarrow L^2[a, b]$ is Hermitian if $\phi \in C[a, b]$ is real valued.

The following result gives a technique for finding the norm of a Hermitian operator.
THEOREM 8B. Suppose that V is a Hilbert space over \mathbb{F}. Suppose further that $T \in B(V)$ is an Hermitian operator. Then

$$\|T\| = \sup_{x \in V, \|x\| = 1} |\langle T(x), x \rangle|.$$

PROOF. For every $x \in V$ satisfying $\|x\| = 1$, we have

$$|\langle T(x), x \rangle| \leq \|T(x)\| \|x\| \leq \|T\| \|x\|^2 = \|T\|,$$

so that

$$\|T\| \geq \sup_{x \in V, \|x\| = 1} |\langle T(x), x \rangle|.$$

To prove the opposite inequality, let

$$M = \sup_{x \in V, \|x\| = 1} |\langle T(x), x \rangle|.$$

For any non-zero vector $u \in V$, the vector $u/\|u\|$ has norm 1. It follows easily from linearity that

$$|\langle T(u), u \rangle| \leq M \|u\|^2 \quad \text{for every } u \in V.$$

For every $x, y \in V$, noting that $T^* = T$, it is not difficult to check that

$$\langle T(x + y), x + y \rangle = \langle T(x) + T(y), x + y \rangle$$

$$= \langle T(x), x \rangle + \langle T(x), y \rangle + \langle T(y), x \rangle + \langle T(y), y \rangle$$

$$= \langle T(x), x \rangle + \langle T(x), y \rangle + \langle y, T^*(x) \rangle + \langle T(y), y \rangle$$

$$= \langle T(x), x \rangle + \langle T(x), y \rangle + \overline{\langle T(x), y \rangle} + \langle T(y), y \rangle$$

$$= \langle T(x), x \rangle + 2\Re \langle T(x), y \rangle + \langle T(y), y \rangle,$$

and similarly

$$\langle T(x - y), x - y \rangle = \langle T(x), x \rangle - 2\Re \langle T(x), y \rangle + \langle T(y), y \rangle,$$

and so

$$4\Re \langle T(x), y \rangle = \langle T(x + y), x + y \rangle - \langle T(x - y), x - y \rangle$$

$$\leq M(\|x + y\|^2 + \|x - y\|^2)$$

$$= 2M(\|x\|^2 + \|y\|^2),$$

the last step as a consequence of the Parallelogram law. We can replace x by λx, where $\lambda \in \mathbb{F}$ satisfies $|\lambda| = 1$ and $\Re \langle T(\lambda x), y \rangle = |\langle T(x), y \rangle|$. Then

$$|\langle T(x), y \rangle| \leq \frac{1}{2} M(\|x\|^2 + \|y\|^2) \quad \text{for every } x, y \in V.$$

Suppose first of all that $T(x) \neq 0$. Then taking

$$y = \frac{\|x\|}{\|T(x)\|} T(x),$$

we have $\|y\| = \|x\|$ and

$$\left| \frac{\|x\|}{\|T(x)\|} |\langle T(x), T(x) \rangle| \right| \leq M \|x\|^2,$$

so that $\|T\| \leq M \|x\|$.

The last inequality holds trivially if $T(x) = 0$, and therefore holds for every $x \in V$. It follows that $\|T\| \leq M$ as required. \Box
PROBLEMS FOR CHAPTER 8

1. Suppose that V and W are Hilbert spaces over \mathbb{F}, and that $T \in B(V,W)$.
 a) Show that $(y, (T^*)^*(x)) = (y, T(x))$ for every $x \in V$ and $y \in W$, using condition (IP1) twice. Explain why this implies that $(T^*)^* = T$.
 b) Deduce that $\|T^*\| = \|T\|$. You may wish to study the proof of Theorem 8A for some useful information.
 c) Show that $\|T(x)\| \leq \|T^*T\|\|x\|$ for every $x \in V$. Explain why this implies the inequality $\|T\|^2 \leq \|T^*T\|$.
 d) Deduce that $\|T^*T\| = \|T\|^2$.

2. Suppose that V, W, and U are Hilbert spaces over \mathbb{F}, and that $T \in B(V,W)$ and $S \in B(W,U)$. Show that $(ST)^* = T^*S^*$.

3. Suppose that V and W are Hilbert spaces over \mathbb{F}. Show that for every $c, a \in \mathbb{F}$ and $T, S \in B(V,W)$, we have $(cT + aS)^* = cT^* + aS^*$.

4. Suppose that V and W are Hilbert spaces over \mathbb{F}. Show that the function $f : B(V,W) \rightarrow B(W,V)$, defined for every $T \in B(V,W)$ by $f(T) = T^*$, is continuous in $B(V,W)$.
 [HINT: Show that $\|f(T) - f(S)\| = \|T - S\|$ for every $T, S \in B(V,W)$].

5. Suppose that V is a complex Hilbert space, and that $x_1, x_2 \in V$ are fixed. Consider the bounded linear operator $T : V \rightarrow V$, where $T(x) = (x, x_1)x_2$ for every $x \in V$. Show that the adjoint operator $T^* : V \rightarrow V$ is given by $T^*(y) = (y, x_2)x_1$ for every $y \in V$.

6. Consider the vector space ℓ^2 of all square summable infinite sequences of complex numbers, with inner product

 $$\langle x, y \rangle = \left(\sum_{i=1}^{\infty} x_i\overline{y_i} \right)^{1/2}.
 $$

 For each of the given bounded linear operators $T : \ell^2 \rightarrow \ell^2$, find the adjoint operator $T^* : \ell^2 \rightarrow \ell^2$:
 a) $T(x) = (0, x_1, x_2, x_3, \ldots)$ for every $x = (x_1, x_2, x_3, \ldots)$, as discussed in Example 7.1.6.
 b) $T(x) = (0, 2x_1, 2x_2, 2x_3, x_4, \ldots)$ for every $x = (x_1, x_2, x_3, x_4, \ldots)$, as discussed in Problem 1 in Chapter 7.

7. Suppose that $(x_n)_{n \in \mathbb{N}}$ is an orthonormal basis in a Hilbert space V over \mathbb{C}, and that $(c_n)_{n \in \mathbb{N}}$ is a fixed bounded sequence of complex numbers. Consider the bounded linear operator $T : V \rightarrow V$ such that $T(x_n) = c_nx_n$ for every $n \in \mathbb{N}$, discussed in Problem 3 in Chapter 7. Find the adjoint operator $T^* : V \rightarrow V$.

8. Suppose that V and W are Hilbert spaces over \mathbb{F}, and that $T \in B(V,W)$. Suppose also that $R(T)$ and $R(T^*)$ denote respectively the range of the linear transformations $T : V \rightarrow W$ and $T^* : W \rightarrow V$.
 a) Show that $(x, z) = 0$ for every $x \in \ker(T)$ and $z \in R(T^*)$.
 b) Deduce that $\ker(T) \subseteq (R(T^*))^\perp$.
 c) Show that $(T(u), T(u)) = 0$ for every $u \in (R(T^*))^\perp$.
 d) Deduce that $(R(T^*))^\perp \subseteq \ker(T)$.
 e) It follows from parts (b) and (d) that $\ker(T) = (R(T^*))^\perp$. Use this and Problem 1 to show that $\ker(T^*) = (R(T))^\perp$.

9. Suppose that V is a Hilbert space over \mathbb{F}. Suppose further that $T \in B(V)$ is invertible, so that $TT^{-1} = T^{-1}T = I$, where $I \in B(V)$ is the identity linear operator.
 a) Show that $T^* = I$.
 b) By studying the adjoint of the equation $TT^{-1} = T^{-1}T = I$, show that T^* is invertible, with inverse $(T^*)^{-1} = (T^{-1})^*$.

\[\text{Chapter 8 : Linear Transformations on Hilbert Spaces} \]
10. Suppose that V is a Hilbert space over F. Suppose further that \mathcal{H} is the subset of all Hermitian operators in $B(V)$.
 a) Show that $cT + aS \in \mathcal{H}$ for every $c, a \in \mathbb{R}$ and $T, S \in \mathcal{H}$.
 b) Show that \mathcal{H} is a closed subset of $B(V)$.
 [HINT: Use Problem 4.]

11. Suppose that V is a Hilbert space over F, and that $T \in B(V)$.
 a) Show that T^*T and TT^* are both Hermitian.
 b) Show that there exist Hermitian $R, S \in B(V)$ such that $T = R + iS$.