8.1. Removable Singularities

Suppose that a function \(f \) is analytic in the punctured disc \(\{ z : 0 < |z - z_0| < R \} \). Observe that it is not necessary for \(f \) to be defined at the point \(z_0 \). We say that the function \(f \) has an isolated singularity at \(z_0 \).

Our purpose is to show that there are only three possible ways in which \(f(z) \) can behave in a punctured neighbourhood of \(z_0 \). To illustrate the first of these, let us first consider the following examples.

Example 8.1.1. The function

\[
 f(z) = \frac{\sin z}{z}
\]

is analytic in the punctured disc \(\{ z : 0 < |z| < R \} \). However, the quotient is not defined at \(z = 0 \). However, note that the function \(\sin z \) is entire. By Theorem 7C, we can write

\[
 \sin z = z + z^3 g(z),
\]

where \(g \) is an entire function. It follows that for \(z \neq 0 \), we have

\[
 f(z) = \frac{\sin z}{z} = 1 + z^2 g(z).
\]

Note that the function \(1 + z^2 g(z) \) is entire. It follows that if we make the further definition \(f(0) = 1 \), then \(f \) is now analytic at \(z = 0 \), and we have removed the isolated singularity.
Example 8.1.2. Suppose that a function \(f \) is analytic in a domain \(D \), and that \(z_0 \in D \). We define the function \(g \) in \(D \) by writing
\[
g(z_0) = f'(z_0),
\]
and writing
\[
g(z) = \frac{f(z) - f(z_0)}{z - z_0}
\]
if \(z \neq z_0 \). It is easily seen from Theorem 7C that \(g \) is analytic in \(D \). However, note that the function \(g \), defined by (2), is analytic in the domain \(D \setminus \{z_0\} \). It also has an isolated singularity at \(z_0 \), which is removed by the definition (1).

Definition. Suppose that a function \(f \) is analytic in the punctured disc \(\{z : 0 < |z - z_0| < R\} \). Suppose further that by assigning a suitable value for \(f(z_0) \), the function \(f \) can be made to be analytic in the disc \(\{z : |z - z_0| < R\} \). Then we say that \(f \) has a removable singularity at \(z_0 \).

Theorem 8A. (Riemann’s Theorem on Removable Singularities) Suppose that a function \(f \) is analytic in the punctured disc \(\{z : 0 < |z - z_0| < R\} \). Suppose further that
\[
\lim_{z \to z_0} (z - z_0)f(z) = 0.
\]
Then \(f \) has a removable singularity at \(z_0 \).

Proof. Suppose that \(z \) is a point in the punctured disc \(\{z : 0 < |z - z_0| < R\} \). Then \(0 < |z - z_0| < R \).

Let \(r_1 \) and \(r_2 \) satisfy \(0 < r_1 < |z - z_0| < r_2 < R \), and let \(C_1 \) and \(C_2 \) denote two circles in the positive (anticlockwise) direction, centred at \(z_0 \), and of radius \(r_1 \) and \(r_2 \) respectively.

The function \(g \), defined by \(g(z) = f'(z) \) and for \(\zeta \neq z \) by
\[
g(\zeta) = \frac{f(\zeta) - f(z)}{\zeta - z},
\]
is clearly analytic in the punctured disk \(\{\zeta : 0 < |\zeta - z_0| < R\} \). Then it can be shown, as in the proof of Theorem 6A, that
\[
\int_{C_1} g(\zeta) \, d\zeta = \int_{C_2} g(\zeta) \, d\zeta.
\]
Combining this with (4), we have
\[
\int_{C_1} f(\zeta) \frac{d\zeta}{\zeta - z} \bigg|_{\zeta} - f(z) \int_{C_2} \frac{d\zeta}{\zeta - z} = \int_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \int_{C_2} \frac{d\zeta}{\zeta - z}. \tag{5}
\]

Note now that the function
\[
\frac{1}{\zeta - z}
\]
is analytic in the star domain \(\{ \zeta : |\zeta - z_0| < |z - z_0| \} \) which contains the contour \(C_1 \). It follows that
\[
\int_{C_1} \frac{d\zeta}{\zeta - z} = 0. \tag{6}
\]

On the other hand, by Cauchy’s integral formula as given by Theorem 6A, we have
\[
\int_{C_2} \frac{d\zeta}{\zeta - z} = 2\pi i. \tag{7}
\]

Furthermore, in view of the condition (3), we have, given any \(\epsilon > 0 \), there exists \(\delta > 0 \) such that \(|(\zeta - z_0)f(\zeta)| < \epsilon \) whenever \(|\zeta - z_0| < \delta \). Without loss of generality, we may assume that
\[
\delta < \frac{1}{2}|z - z_0|. \tag{8}
\]

If we now take \(r_1 = \delta \), then
\[
\left| \int_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta \right| = \left| \int_{C_1} \frac{(\zeta - z_0)f(\zeta)}{(\zeta - z_0)(\zeta - z)} d\zeta \right| \leq \frac{\epsilon}{\delta(|z - z_0| - \delta)} 2\pi\delta = \frac{2\pi\epsilon}{|z - z_0| - \delta} \leq \frac{4\pi\epsilon}{|z - z_0|},
\]
in view of Theorem 4B and (8). Since \(\epsilon > 0 \) is arbitrary, we conclude that
\[
\int_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta = 0. \tag{9}
\]

Combining (5)–(7) and (9), we obtain
\[
f(z) = \frac{1}{2\pi i} \int_{C_2} \frac{f(\zeta)}{\zeta - z} d\zeta. \tag{10}
\]

Note now that (10) holds for every \(z \) in the punctured disc \(\{ z : 0 < |z - z_0| < r_2 \} \). Note also that the integral on the right hand side of (10) represents an analytic function in the disc \(\{ z : |z - z_0| < r_2 \} \) (see the proof of Theorem 6B). It follows that if we define
\[
f(z_0) = \frac{1}{2\pi i} \int_{C_2} \frac{f(\zeta)}{\zeta - z_0} d\zeta,
\]

then the function \(f \) is analytic in the disc \(\{ z : |z - z_0| < r_2 \} \).

Remarks. (1) Note that condition (3) will be satisfied if \(f(z) \) is continuous at \(z_0 \), or if \(|f(z)| \) is bounded.

(2) Since an analytic function is continuous, it follows that removable singularities at \(z_0 \) can be overcome by defining
\[
f(z_0) = \lim_{z \to z_0} f(z).
\]
8.2. Poles

DEFINITION. Suppose that a function \(f \) is analytic in the punctured disc \(\{ z : 0 < |z - z_0| < R \} \). Suppose further that

\[
f(z) = \frac{g(z)}{(z - z_0)^n},
\]

where \(n \in \mathbb{N} \) and the function \(g \) is analytic in some neighbourhood of \(z_0 \), with \(g(z_0) \neq 0 \). Then we say that \(f \) has a pole of order \(n \) at \(z_0 \). Furthermore, if \(n = 1 \), then we say that \(f \) has a simple pole at \(z_0 \).

THEOREM 8B. Suppose that a function \(f \) is analytic in the punctured disc \(\{ z : 0 < |z - z_0| < R \} \). Then \(f \) has a pole at \(z_0 \) if and only if

\[
\lim_{z \to z_0} |f(z)| = \infty;
\]

in other words, given any \(E > 0 \), there exists \(\delta > 0 \) such that \(|f(z)| > E \) whenever \(0 < |z - z_0| < \delta \).

PROOF. Note first of all that (12) follows immediately from (11), since \(g(z_0) \neq 0 \). Suppose now that (12) holds. Then \(f(z) \neq 0 \) in some punctured disc \(\{ z : 0 < |z - z_0| < r \} \), where \(r \leq R \). It follows that the function

\[
F(z) = \frac{1}{f(z)}
\]

is analytic in \(\{ z : 0 < |z - z_0| < r \} \), and has an isolated singularity at \(z_0 \). On the other hand, it follows from (12) that \(F(z) \to 0 \) as \(z \to z_0 \). Hence by Theorem 8A, \(F \) has a removable singularity at \(z_0 \). If we define \(F(z_0) = 0 \), then \(F \) is now analytic in the disc \(\{ z : |z - z_0| < r \} \). Clearly \(F(z) \) is not identically zero in \(\{ z : |z - z_0| < r \} \). It follows from Theorem 7F that there exists \(n \in \mathbb{N} \) such that

\[
F(z) = (z - z_0)^n h(z),
\]

where the function \(h \) is analytic in \(\{ z : |z - z_0| < r \} \), with \(h(z_0) \neq 0 \). Hence

\[
g(z) = \frac{1}{h(z)}
\]

is analytic in some neighbourhood of \(z_0 \), and (11) holds. Clearly \(g(z_0) \neq 0 \).

REMARK. Note that a function \(f \) has a pole of order \(n \) at \(z_0 \) if and only if the function \(1/f \) has a zero of order \(n \) at \(z_0 \).

8.3. Essential Singularities

DEFINITION. Suppose that a function \(f \) is analytic in the punctured disc \(\{ z : 0 < |z - z_0| < R \} \). Suppose further that the isolated singularity at \(z_0 \) is neither removable nor a pole. Then we say that \(f \) has an essential singularity at \(z_0 \).

EXAMPLE 8.3.1. The function \(e^{1/z} \) is analytic at every \(z \neq 0 \). It has an isolated singularity at \(z = 0 \). Let us restrict \(z \) to be real numbers, and consider \(e^{1/x} \), where \(x > 0 \). Clearly

\[
\lim_{x \to 0^+} e^{1/x} = \lim_{y \to +\infty} e^y = \infty,
\]
so that the singularity is not removable. On the other hand, for every \(n \in \mathbb{N} \),

\[
\lim_{x \to 0^+} x^n e^{1/x} = \lim_{y \to +\infty} \frac{e^y}{y^n} = \infty,
\]

so that the singularity is not a pole of order \(n \). Hence \(e^{1/z} \) has an essential singularity at \(z = 0 \).

To illustrate the wild behaviour of an analytic function near an essential singularity, we mention Picard’s theorem that such a function assumes all values except possibly one in any neighbourhood of an essential singularity. The following result is somewhat weaker, and shows that such a function comes arbitrarily close to any given complex number in any neighbourhood of an essential singularity.

THEOREM 8C. (CASORATI-WEIERSTRASS) Suppose that a function \(f \) is analytic in the punctured disc \(\{ z : 0 < |z - z_0| < R \} \), with an essential singularity at \(z_0 \). Then given any \(w \in \mathbb{C} \) and any real numbers \(\epsilon > 0 \) and \(\delta > 0 \), there exists \(z \) in the punctured disc satisfying

\[
0 < |z - z_0| < \delta \quad \text{and} \quad |f(z) - w| < \epsilon.
\]

Proof. Suppose on the contrary that the conclusion does not hold. Then there exist \(w \in \mathbb{C} \) and real numbers \(\epsilon > 0 \) and \(\delta > 0 \) such that \(|f(z) - w| \geq \epsilon \) whenever \(0 < |z - z_0| < \delta \). It follows that the function

\[
g(z) = \frac{1}{f(z) - w}
\]

is analytic and bounded in the punctured disc \(\{ z : 0 < |z - z_0| < \delta \} \), with an isolated singularity at \(z_0 \) which is removable, in view of Theorem 8A. It follows that by defining \(g(z_0) \) appropriately, the function \(g \) is analytic in the disc \(\{ z : |z - z_0| < \delta \} \). On the other hand, the function \(g \) is clearly not identically zero in \(\{ z : |z - z_0| < \delta \} \). Furthermore, note that

\[
f(z) = w + \frac{1}{g(z)}.
\]

If \(g(z_0) \neq 0 \), then \(f \) is analytic at \(z_0 \). If \(g(z_0) = 0 \), then \(f \) has a pole at \(z_0 \). In either case, the conclusion contradicts the assumption that \(f \) has an essential singularity at \(z_0 \), and this completes the proof. \(\square \)

8.4. Isolated Singularities at Infinity

The behaviour of a function \(f(z) \) at \(z = \infty \) can be studied via the behaviour of the function \(f(1/\zeta) \) at \(\zeta = 0 \). A punctured neighbourhood \(\{ \zeta : 0 < |\zeta| < R^{-1} \} \) of 0 then plays the same role as the “punctured” neighbourhood \(\{ z : R < |z| < \infty \} \) of \(\infty \).

Suppose now that a function \(f(z) \) is analytic in the domain \(\{ z : R < |z| < \infty \} \). Then by using \(z = 1/\zeta \) and considering \(\zeta = 0 \), we see that the function \(f(z) \) has an isolated singularity at \(z = \infty \). This may be a removable singularity, a pole or an essential singularity.

Corresponding to Theorem 8A, suppose that \(|f(z)/z| \to 0 \) as \(|z| \to \infty \). Then the singularity is removable by defining \(f(\infty) \) suitably to make \(f(z) \) continuous at \(z = \infty \). In other words, we need to define

\[
f(\infty) = \lim_{\zeta \to 0} f\left(\frac{1}{\zeta} \right).
\]
In the special case that $f(\infty) = 0$, then we say that f has a zero at $z = \infty$. Furthermore, if f is not identically zero, then, corresponding to Theorem 7F, there exists $n \in \mathbb{N}$ such that

$$f(z) = \frac{h(z)}{z^n},$$

where $h(z)$ is analytic in $\{z : R < |z| < \infty\}$, and $h(\infty) \neq 0$. In this case, we say that f has a zero of order n at $z = \infty$.

Corresponding to Theorem 8B, suppose that $|f(z)| \to \infty$ as $|z| \to \infty$. Then f has a pole at $z = \infty$, and there exists $n \in \mathbb{N}$ such that

$$f(z) = z^n h(z),$$

where $h(z)$ is analytic in $\{z : R < |z| < \infty\}$, and $h(\infty) \neq 0$. In this case, we say that f has a pole of order n at $z = \infty$.

Corresponding to Theorem 8C, suppose that the isolated singularity at $z = \infty$ is neither removable nor a pole. Then it is an essential singularity. In this case, given any $w \in \mathbb{C}$ and any real numbers $\epsilon > 0$ and $N > 0$, there exists z in the domain $\{z : R < |z| < \infty\}$ satisfying

$$|z| > N \quad \text{and} \quad |f(z) - w| < \epsilon.$$

In other words, the function $f(z)$ comes arbitrarily close to any given complex number in any neighbourhood of $z = \infty$.

8.5. Further Examples

Example 8.5.1.

The function

$$f(z) = \frac{e^z - 1}{z(z - 1)}$$

is analytic at every $z \in \mathbb{C}$ except for isolated singularities at $z = 0, 1$. At $z = 1$, it has a simple pole; note that we can write

$$f(z) = \frac{g(z)}{z - 1} \quad \text{with} \quad g(z) = \frac{e^z - 1}{z},$$

and $g(1) \neq 0$. At $z = 0$, it has a removable singularity, since

$$\lim_{z \to 0} \frac{e^z - 1}{z(z - 1)} = \lim_{z \to 0} \frac{e^z}{2z - 1} = -1$$

by l’Hopital’s rule. It follows that if we define $f(0) = -1$, then f is analytic at $z = 0$. The function $f(z)$ also has an isolated singularity at $z = \infty$. To study the isolated singularity at $z = \infty$, note first of all that

$$\lim_{|z| \to \infty} \frac{e^z}{z(z - 1)}$$

do not exist. To see this, note that

$$\lim_{x \to \infty} \frac{e^x - 1}{x(x - 1)} = +\infty \quad \text{and} \quad \lim_{x \to -\infty} \frac{e^x - 1}{x(x - 1)} = 0.$$
Hence the singularity is not removable. Suppose next that \(n \in \mathbb{N} \) is given and fixed. Then
\[
h(z) = \frac{f(z)}{z^n} = \frac{e^z - 1}{z^{n+1}(z - 1)}
\]
is not analytic at \(z = \infty \), since
\[
\lim_{|z|\to\infty} \frac{e^z - 1}{z^{n+1}(z - 1)}
\]
does not exist. To see this, note that
\[
\lim_{x \to +\infty} \frac{e^x - 1}{x^{n+1}(x - 1)} = +\infty \quad \text{and} \quad \lim_{x \to -\infty} \frac{e^x - 1}{x^{n+1}(x - 1)} = 0.
\]
Hence the singularity is not a pole. It follows that \(f(z) \) has an essential singularity at \(z = \infty \).

Example 8.5.2. The function
\[
f(z) = \frac{(z^2 - 4)(z - 1)^4}{(\sin \pi z)^4}
\]
is analytic at every \(z \in \mathbb{C} \) except for isolated singularities at \(z = 0, \pm 1, \pm 2, \ldots \), where the denominator vanishes. Note also that the numerator vanishes at \(z = 1, \pm 2 \). Note that the function \(\sin \pi z \) has simple zeros at \(z = 0, \pm 1, \pm 2, \ldots \). It follows that \(f \) has poles of order 4 at \(z = 0, -1, 1, 2 \). Next, note that the function \((z^2 - 4)(z - 1)^4\) has simple zeros at \(z = \pm 2 \). It follows that \(f \) has poles of order 3 at \(z = \pm 2 \). To study the isolated singularity at \(z = 1 \), note that by Theorem 7C, we have
\[
\sin \pi z = -\pi(z - 1) + g(z)(z - 1)^2,
\]
where \(g \) is entire. It follows that
\[
\lim_{z \to 1} \frac{(z^2 - 4)(z - 1)^4}{(\sin \pi z)^4} = \lim_{z \to 1} \frac{z^2 - 4}{(\pi - g(z)(z - 1))^4} = -\frac{3}{\pi^4},
\]
and so \(f \) has a removable singularity at \(z = 1 \). Finally, the singularity at \(z = \infty \) is not isolated, since there does not exist any \(R > 0 \) such that the function \(f(z) \) is analytic in the domain \(\{ z : R < |z| < \infty \} \).

8.6. Laurent Series

Example 8.6.1. Suppose that the function \(f \) is analytic in the punctured disc \(\{ z : 0 < |z - z_0| < R \} \), with a pole of order \(m \) at \(z_0 \). Then
\[
f(z) = \frac{g(z)}{(z - z_0)^m},
\]
where the function \(g \) is analytic in \(\{ z : |z - z_0| < R \} \), with \(g(z_0) \neq 0 \). By Theorem 7C, we have
\[
g(z) = g(z_0) + g'(z_0)(z - z_0) + \frac{g''(z_0)}{2!}(z - z_0)^2 + \ldots + \frac{g^{(m-1)}(z_0)}{(m-1)!}(z - z_0)^{m-1} + g_m(z)(z - z_0)^m,
\]
where \(g_m(z) \) is analytic in the disc \(\{ z : |z - z_0| < R \} \). It follows that
\[
f(z) = \frac{g(z_0)}{(z - z_0)^m} + \frac{g'(z_0)}{(z - z_0)^{m-1}} + \frac{g''(z_0)}{2!(z - z_0)^{m-2}} + \ldots + \frac{g^{(m-1)}(z_0)}{(m-1)!(z - z_0)} + g_m(z).
\]
The expression
\[
g(z_0) \frac{g(z_0)}{(z - z_0)^m} + \frac{g'(z_0)}{(z - z_0)^{m-1}} + \frac{g''(z_0)}{2!(z - z_0)^{m-2}} + \cdots + \frac{g^{(m-1)}(z_0)}{(m-1)!(z - z_0)}
\]
is called the principal part of \(f \) at \(z_0 \). If we use Theorem 7A instead, then we can show that
\[
f(z) = \sum_{n=-m}^{\infty} a_n(z - z_0)^n
\]
for suitable choices of the coefficients \(a_n \).

Our main task in this section is to generalize this example. The first step in this direction can be summarized by the following result.

THEOREM 8D. Suppose that a function \(f \) is analytic in the punctured disc \(\{z : 0 < |z - z_0| < R\} \), with an isolated singularity at \(z_0 \). Then there exist unique functions \(f_1 \) and \(f_2 \) such that

(a) \(f(z) = f_1(z) + f_2(z) \) in \(\{z : 0 < |z - z_0| < R\} \),

(b) \(f_1 \) is analytic in \(\mathbb{C} \) except possibly at \(z_0 \),

(c) \(f_1(z) \to 0 \) as \(|z| \to \infty \), and

(d) \(f_2 \) is analytic in the disc \(\{z : |z - z_0| < R\} \).

Proof. We begin the proof in the same way as for Theorem 8A. Suppose that \(z \) is a point in the punctured disc \(\{z : 0 < |z - z_0| < R\} \). Let \(r_1 \) and \(r_2 \) satisfy \(0 < r_1 < |z - z_0| < r_2 < R \), and let \(C_1 \) and \(C_2 \) denote two circles in the positive (anticlockwise) direction, centred at \(z_0 \), and of radius \(r_1 \) and \(r_2 \) respectively. On combining (5)–(7), we obtain
\[
f(z) = \frac{1}{2\pi i} \int_{C_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta - \frac{1}{2\pi i} \int_{C_1} \frac{f(\zeta)}{\zeta - z} \, d\zeta.
\]
(13)

Write
\[
f_1(z) = -\frac{1}{2\pi i} \int_{C_1} \frac{f(\zeta)}{\zeta - z} \, d\zeta \quad \text{and} \quad f_2(z) = \frac{1}{2\pi i} \int_{C_2} \frac{f(\zeta)}{\zeta - z} \, d\zeta.
\]
(14)

Part (a) follows immediately. For part (d), note that the second integral in (14) represents an analytic function in the disc \(\{z : |z - z_0| < r_2\} \) (as in the proof of Theorems 6B and 8A). For part (b), note that the first integral in (14) represents an analytic function in the annulus \(\{z : |z - z_0| > r_1\} \) (similar to the proof of Theorem 6B). Note next that \(f_2(z) \) and \(f(z) \) are independent of the choice of \(r_1 \), so that it follows from (a) that \(f_1(z) \) is also independent of the choice of \(r_1 \). Similarly, \(f_2(z) \) is independent of the choice of \(r_2 \). It is easy to see that
\[
\lim_{|z| \to \infty} \int_{C_1} \frac{f(\zeta)}{\zeta - z} \, d\zeta = 0.
\]
Part (c) follows immediately. To show that the functions \(f_1 \) and \(f_2 \) are unique, suppose that \(g_1 \) and \(g_2 \) are functions having the same properties as \(f_1 \) and \(f_2 \) respectively. Then
\[
f_1(z) - g_1(z) = g_2(z) - f_2(z)
\]
in the punctured disc \(\{z : 0 < |z - z_0| < R\} \). Let
\[
F(z) = \begin{cases}
 g_2(z) - f_2(z) & \text{if } |z - z_0| < R, \\
 f_1(z) - g_1(z) & \text{if } |z - z_0| > 0.
\end{cases}
\]
Then F is entire. On the other hand, it follows from part (c) that $F(z) \to 0$ as $|z| \to \infty$. Hence F is bounded. It follows from Liouville’s theorem that F is constant in \mathbb{C}, and so we must have $F(z) = 0$ for every $z \in \mathbb{C}$. This completes the proof. \(\square\)

We can now state our generalization of Example 8.6.1.

Theorem 8E. Suppose that a function f is analytic in the punctured disc $\{z : 0 < |z - z_0| < R\}$, with an isolated singularity at z_0. For every $n \in \mathbb{Z}$, let

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} \, dz,$$

where C is a circle in the positive (anticlockwise) direction centred at z_0 and of radius r, where $0 < r < R$. Then the series

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

is convergent in the punctured disc $\{z : 0 < |z - z_0| < R\}$. Furthermore, this convergence is uniform in any annulus $\{z : r_1 < |z - z_0| < r_2\}$, where $0 < r_1 < r_2 < R$.

Remark. To say that the series converges uniformly to $f(z)$ in the annulus $\{z : r_1 < |z - z_0| < r_2\}$, we mean given any $\epsilon > 0$, there exists $N_0 = N_0(\epsilon, r_1, r_2)$, independent of the choice of z, such that

$$\left| f(z) - \sum_{n=-N_0}^{N_0} a_n (z - z_0)^n \right| < \epsilon$$

for every z in the annulus $\{z : r_1 < |z - z_0| < r_2\}$ whenever $N_1 > N_0$ and $N_2 > N_0$.

Definition. The series (16) is called the Laurent series for the function f at z_0.

Proof of Theorem 8E. The first step in our proof is to show that if the series in (16) converges uniformly on the circle C centred at z_0 and of radius r, where $0 < r < R$, then the coefficients a_n are given by (15). Suppose that $n \in \mathbb{Z}$ is chosen and fixed. For any $\epsilon > 0$, we can choose N_1 and N_2 so large that $-N_1 \leq n \leq N_2$ and

$$\left| f(z) - \sum_{j=-N_1}^{N_2} a_j (z - z_0)^j \right| < \epsilon$$

for every $z \in C$. Then it follows from Theorem 4B that

$$\left| \frac{1}{2\pi i} \int_C \left(f(z) - \sum_{j=-N_1}^{N_2} a_j (z - z_0)^j \right) \frac{dz}{(z - z_0)^{n+1}} \right| \leq \frac{\epsilon}{r^n}. \quad (17)$$

Since

$$\frac{1}{2\pi i} \int_C (z - z_0)^k \, dz = \begin{cases} 1 & \text{if } k = -1, \\ 0 & \text{if } k \neq -1, \end{cases}$$

we have

$$\frac{1}{2\pi i} \int_C \left(\sum_{j=-N_1}^{N_2} a_j (z - z_0)^j \right) \frac{dz}{(z - z_0)^{n+1}} = a_n.$$
so that (17) can be simplified to
\[\left| \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} \, dz - a_n \right| \leq \frac{\epsilon}{r^n}. \]

Since \(\epsilon > 0 \) is arbitrary, (15) follows immediately. It now remains to show that \(f(z) \) can be represented in the form (16) in the punctured disc \(\{ z : 0 < |z-z_0| < R \} \), and that the convergence is uniform in any annulus \(\{ z : r_1 < |z-z_0| < r_2 \} \), where \(0 < r_1 < r_2 < R \). Suppose that \(0 < r_1 < r < r_2 < R \). Following Theorem 8D, we can write
\[f(z) = f_1(z) + f_2(z), \tag{18} \]
where \(f_1(z) \) and \(f_2(z) \) are uniquely determined and satisfy conditions (b)–(d) of Theorem 8D. Since \(f_2 \) is analytic in the disc \(\{ z : |z-z_0| < R \} \), it follows from Theorem 7A that the Taylor series
\[f_2(z) = \sum_{n=0}^{\infty} A_n (z-z_0)^n \tag{19} \]
converges in the disc \(\{ z : |z-z_0| < R \} \), uniformly in the closed disc \(\{ z : |z-z_0| \leq r_2 \} \). To study \(f_1(z) \), write
\[w = \frac{1}{z-z_0} \quad \text{or} \quad z = \frac{1}{w} + z_0. \]
Then
\[f_1(z) = f_1 \left(\frac{1}{w} + z_0 \right) \]
is an entire function of \(w \), and so it follows from Theorem 7A that the Taylor series
\[f_1 \left(\frac{1}{w} + z_0 \right) = \sum_{m=1}^{\infty} B_m w^m \tag{20} \]
converges in \(\mathbb{C} \), uniformly in the closed disc \(\{ w : |w| \leq 1/r_1 \} \). Note that the constant term \(B_0 \) in the Taylor series is missing, since \(B_0 \) corresponds to the value of the function at \(w = 0 \), or \(z = \infty \), and this is 0 in view of condition (c) in Theorem 8D. However, (20) is equivalent to saying that the series
\[f_1(z) = \sum_{m=1}^{\infty} B_m (z-z_0)^{-m} \tag{21} \]
converges in \(\mathbb{C} \setminus \{0\} \), uniformly in \(\{ z : |z-z_0| \geq r_1 \} \). The result now follows on combining (18), (19) and (21).

Definition. The series
\[f_1(z) = \sum_{n=-\infty}^{-1} a_n (z-z_0)^n, \]
where \(a_n \) is given by (15), is called the principal part of the function \(f \) at \(z_0 \).

The next result highlights the relationship between the principal part of a function and the nature of the isolated singularity.
THEOREM 8F. Suppose that a function \(f \) is analytic in the punctured disc \(\{ z : 0 < |z - z_0| < R \} \), with an isolated singularity at \(z_0 \). Suppose further that the Laurent coefficients \(a_n \) are given by (15).

(a) The function \(f \) either is analytic or has a removable singularity at \(z_0 \) if and only if \(a_n = 0 \) for every \(n < 0 \).

(b) The function \(f \) has a pole at \(z_0 \) if and only if a positive but finite number of coefficients \(a_n \) with \(n < 0 \) are non-zero.

(c) The function \(f \) has an essential singularity at \(z_0 \) if and only if an infinite number of coefficients \(a_n \) with \(n < 0 \) are non-zero.

Proof. Note first of all that if \(f \) has a removable singularity at \(z_0 \), then \(f \) can be made analytic at \(z_0 \) by a suitable choice of \(f(z_0) \). Part (a) now follows on observing that an analytic function has a Taylor series, and that a Laurent series with no principal part is a Taylor series. To prove part (b), note first of all that if a positive but finite number of coefficients \(a_n \) with \(n < 0 \) are non-zero, then there exists \(m > 0 \) such that \(a_{-m} \neq 0 \) but \(a_n = 0 \) for every \(n < -m \). In this case, we have

\[
f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n,
\]

so that

\[
f(z) = \frac{g(z)}{(z - z_0)^m},
\]

where \(m \in \mathbb{N} \) and the function \(g \) is analytic in some neighbourhood of \(z_0 \), with \(g(z_0) = a_{-m} \neq 0 \). This shows that \(f \) has a pole of order \(m \) at \(z_0 \). The converse is given in Example 8.6.1. Part (b) follows. Part (c) follows immediately from (a) and (b).

Example 8.6.2. The observation that a Laurent series is unique enables us to use different methods to find the coefficients apart from the formula (15). Consider, for example, the function \(e^{1/z} \). Using the substitution \(z = 1/w \) on the Taylor series

\[
e^w = \sum_{n=0}^{\infty} \frac{w^n}{n!},
\]

we obtain the Laurent series

\[
e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!z^n} = \ldots + \frac{1}{3!z^3} + \frac{1}{2!z^2} + \frac{1}{z} + 1.
\]

We conclude this chapter by making a remark on various equivalent definitions of analyticity in a domain \(D \). The reader is advised to check the following theorem very carefully.

THEOREM 8G. For any function \(f \) and any domain \(D \), the following statements are equivalent:

(a) \(f(z) \) is analytic in \(D \).

(b) \(f(z) \) has continuous derivatives of all orders in \(D \).

(c) \(f'(z) \) exists and is continuous in \(D \).

(d) \(f'(z) \) exists in \(D \).

(e) \(f'(z) \) exists in \(D \) except possibly at a finite number of points in \(D \), and \(f(z) \) is continuous at these exceptional points.

(f) \(f(z) \) can be represented uniformly by its Taylor series in the neighbourhood of every point in \(D \).
PROBLEMS FOR CHAPTER 8

1. For each of the functions below, classify all the singular points in \(\mathbb{C} \):
 a) \(f(z) = e^z \)
 b) \(f(z) = \frac{\cos z}{z} \)
 c) \(f(z) = \frac{z^2 + 1}{z^2 - 1} \)
 d) \(f(z) = \frac{z^4}{z^3 + z} \)
 e) \(f(z) = -\frac{z}{\cos z} \)

2. Show that the principal parts of the function \(f(z) = 8z^3(z + 1)^{-1}(z - 1)^{-2} \) at \(z = -1 \) and \(z = 1 \) are respectively \(-2(z + 1)^{-1}\) and \(4(z - 1)^{-2} + 10(z - 1)^{-1}\).

3. For each of the functions below, find the principal part at the given points:
 a) \(f(z) = e^z \) at the point \(z = 0 \)
 b) \(f(z) = \frac{z^6}{(1 - z)^3} \) at the point \(z = 1 \)
 c) \(f(z) = \frac{\sin z}{(z - 2\pi)^2} \) at the point \(z = 2\pi \)

4. Expand the function \((z - 1)/(z + 1) \) in powers of \(1/z \).

5. For each of the functions below, use partial fractions if appropriate and find the principal part at each of its singular points in \(\mathbb{C} \):
 a) \(f(z) = \frac{12}{z^2(z^2 + 4)} \)
 b) \(f(z) = \frac{z^4 + 1}{z(z^2 + 1)^2} \)
 c) \(f(z) = \frac{48z^6}{(z - 1)^2(z - 2)} \)
 d) \(f(z) = \frac{z^6 + 1}{(z - 1)^3(z^2 + 4)^2} \)

6. Suppose that \(f(z) = b_m z^{-m} + b_{m+1} z^{-m+1} + \ldots + b_0 + b_1 z + \ldots + b_k z^k \), where \(m, k \in \mathbb{N} \). Suppose further that \(f(z) \) has Laurent series
 \[
 \sum_{n=-\infty}^{\infty} a_n z^n
 \]
 at the point \(z = 0 \). Show by direct calculation that \(a_n = b_n \) whenever \(-m \leq n \leq k\) and \(a_n = 0 \) otherwise.

7. a) Consider the function \(f(z) = e^{1/z} \). Note that for every \(k \in \mathbb{Z} \), the coefficient for the term \(z^k \) in the Laurent series of \(f(z) \) at \(z = 0 \) is given by
 \[
a_k = \frac{1}{2\pi i} \int_C \frac{e^{1/\zeta}}{\zeta^{k+1}} d\zeta,
 \]
 where \(C \) is the circle \(\{ z : |z| = 1 \} \) followed in the positive (anticlockwise) direction. Show that
 \[
a_k = \frac{1}{2\pi} \int_0^{\pi} \frac{e^{\cos \theta} \cos(\sin \theta + k\theta)}{\cos(\sin \theta - n\theta)} d\theta = \frac{1}{n!}.
 \]
 b) Find the Laurent series for the function \(f(z) = e^{1/z} \) at \(z = 0 \) without using part (a).
 c) Deduce that for every \(n \in \mathbb{N} \cup \{0\} \),
 \[
 \frac{1}{n!} \int_0^{\pi} \frac{e^{\cos \theta} \cos(\sin \theta - n\theta)}{\cos(\sin \theta - n\theta)} d\theta = \frac{1}{n!}.
 \]