10. ORDINAL NUMBERS

§10.1 Transitive Sets

We turn our attention to ordinal numbers. With finite numbers the cardinal numbers, apart from zero, are 1, 2, 3, … while the ordinal numbers are 1st, 2nd, 3rd, … There really is very little difference. For infinite sets there is a big difference. While cardinal numbers simply measure the size of a set, ordinal numbers describe the structure of a well-ordered set.

Consider the sequence 1, 2, 3, … , ∞ where “∞” is a symbol that is defined to be greater than every finite number. As a set this is no bigger than the set {1, 2, 3, …}. But the ordering is quite different. One set has a largest while the other does not.

A set x is transitive if ∪x ⊆ x, that is if every element of an element of x is itself an element of x.

Example 1: \{0, 1, 2, \{2\}, \{1, 2\}, (2, 1)\} is transitive.

The natural numbers are transitive, as is the set of natural numbers.

Theorem 1: A set x is transitive if and only if x ⊆ øx.

Suppose x is trans. Let y ∈ x and let
z ∈ y. Then z ∈ ∪x and so z ∈ x. Hence y ⊆ x. Suppose x ⊆ øx. Let
y ∈ ∪x. Then y ∈ z for some z ∈ x ⊆ øx. So z ⊆ x and hence y ∈ x.

Theorem 2: If the elements of x are transitive then so is ∩x.

Proof: Let y ∈ z ∈ ∩x. Let u ∈ x. Then y ∈ z ∈ u and since u is transitive, y ∈ u. Thus
y ∈ ∩x Hence ∩x is transitive.

Theorem 3: If the elements of x are transitive then so is ∪x.

Proof: Let y ∈ z ∈ ∪x. Then z ∈ u for some u ∈ x. Then y ∈ z ∈ u and since u is transitive, y ∈ u. Thus y ∈ ∪x and so ∪x is transitive.

§10.2 Ordinal Numbers

An ordinal number is a transitive set which is well-ordered by the relation “∈ or =”. So, for ordinals, < and ∈ are equivalent. We denote the class of ordinals by Ord.

Examples 2: Ordinal numbers include all the natural numbers, as well as ω and ω+.

If a well-ordered set X is similar to the ordinal α we say that α is its ordinal number. The above property shows that this is uniquely defined. We denote the ordinal of X by ord (X, ≤). If the ordering is understood we can write ord(X).

Theorem 3: If α is an ordinal number, then so is α+.
Theorem 4: Elements of ordinals are ordinals.

Proof: Elements of ordinals are subsets and so are well-ordered. Let \(x \in y \in z \in \alpha \), where \(\alpha \) is an ordinal. Then since \(\alpha \) is transitive, \(x, y, z \) are elements of \(\alpha \). Since \(\in \) is transitive on \(\alpha \), \(x \in z \).

Theorem 5: Similar ordinals are equal.

Proof: Let \(f: \alpha \to \beta \) be a similarity. Suppose \(x \) is the smallest element of \(\alpha \) such that \(f(x) \neq x \). If \(y < x \) then \(y = f(y) < f(x) \), whence \(x \subseteq f(x) \). Now suppose \(y < f(x) \). Then, since \(f^{-1} \) is a similarity, \(f^{-1}(y) < x \). Hence \(y = f(f^{-1}(y)) = f f^{-1}(y) < x \). So \(f(x) \subseteq x \), a contradiction. Hence there is no such \(x \).

Theorem 6: If \(\alpha \) and \(\beta \) are ordinal numbers and \(\alpha \subseteq \beta \) then \(\alpha \) is an element of \(\beta \).

Proof: Suppose \(\alpha, \beta \) are ordinals such that \(\alpha \subseteq \beta \). Let \(x \) be the least element of \(\beta \). Since \(\beta \) is transitive, \(x \subseteq \beta \). Since \(\{x, y\} \) has a least, either \(x \in y \) or \(x = y \) or \(y \in x \). If \(x \in y \) or \(x = y \), then \(x \in \alpha \), contradicting the fact that \(x \subseteq \beta \). Thus \(y \in x \) and so \(\alpha \subseteq x \). But \(x \subseteq \alpha \). Hence \(x = \alpha \). As \(x \in \beta \), \(\alpha \in \beta \).

Theorem 7: Transitive subsets of ordinals are ordinals.

Proof: Suppose there is an ordinal \(\alpha \) having a transitive subset which is not itself an ordinal, and suppose \(\beta \) is the least element of \(\beta - \alpha \). Since \(\beta - \alpha \) is transitive, \(x \subseteq \beta \). Since \((\beta - \alpha) \cap x = 0 \), \(x \subseteq \alpha \). Let \(y \in \alpha \). Then \(y \in \beta \). Since \(\{x, y\} \) has a least, either \(x \in y \) or \(x = y \) or \(y \in x \). If \(x \in y \) or \(x = y \), then \(x \in \alpha \), contradicting the fact that \(x \subseteq \beta - \alpha \). Thus \(y \in x \) and so \(\alpha \subseteq x \). But \(x \subseteq \alpha \). Hence \(x = \alpha \). As \(x \in \beta \), \(\alpha \in \beta \).

Theorem 8: If \(X \) is a set of ordinals then \(\bigcup X \) is an ordinal.

Proof: Suppose \(X \) is a set of ordinals. Then \(\bigcup X \) is transitive. Let \(0 \neq Y \subseteq \bigcup X \). Then the elements of \(Y \) are ordinals and so \(\cap Y \) is transitive. Let \(\alpha \in Y \). Then \(\cap Y \subseteq \alpha \). Thus \(\cap Y \) is an ordinal. Hence \(\cap Y \in \alpha \) or \(\cap Y = \alpha \in Y \). Hence if \(\cap Y \notin Y \), \(\cap Y \in \cap Y \), a contradiction. Thus \(\cap Y \) is the least element of \(Y \). Hence \(\bigcup X \) is well-ordered by \(\in \). Thus \(\bigcup X \) is an ordinal.

Theorem 9 (Burali-Forti Paradox): The class of ordinals is not a set.

Proof: Suppose \(\text{Ord} \) is a set. Then \(\bigcup \text{Ord} \in \text{Ord} \) and so \(\bigcup \text{Ord} \in (\bigcup \text{Ord}) \) \(\in \text{Ord} \) so \(\bigcup \text{Ord} \in \bigcup \text{Ord} \), a contradiction.
§10.3 Transfinite Induction

The method of Proofs by Induction is very useful in mathematics. It works because every non-empty set of natural numbers has a least, that is, the set of natural numbers is well-ordered by the usual ordering. Finite induction can be extended to infinite sets, provided we can well-order them.

Theorem 10 (Proof by Transfinite Induction): Suppose W is a well-ordered set and X is a subset of W. Suppose that X has the property that whenever all the predecessors of x are in X then so is x. Then $X = W$.

Proof: Suppose $X \subseteq W$. Then $m = \min(W - X) \rightarrow C!$

We can also define things by transfinite induction. The following is a special case.

Theorem 11: Suppose G is a generalized function whose domain is S, a subset of Ord with no maximum. Then there exists a unique function f on S such that $f(x^+) = G(f(x))$ for all $x \in S$ and $f(x) = \cup \{f(y) \mid y < x\}$ if x has no predecessor.

§10.4 The Arithmetic of Ordinal Numbers

A non-zero ordinal is a **limit ordinal** if it has no immediate predecessor. An obvious example is ω.

We define **addition** of ordinals by transfinite induction as follows:

- (A0) $\alpha + 0 = \alpha$;
- (A1) $\alpha + \beta^+ = (\alpha + \beta)^+$;
- (A2) $\alpha + \beta = \cup \{\alpha + \gamma \mid \gamma < \beta\}$ if β is a limit ordinal.

Example 3: Successively adding 1 to ω we get the sequence $\omega + 1, \omega + 2, \ldots$

We define **multiplication** of ordinals by transfinite induction as follows:

- (M0) $\alpha 0 = 0$;
- (M1) $\alpha \beta^+ = (\alpha \beta) + \alpha$;
- (M2) $\alpha \beta = \cup \{\alpha \gamma \mid \gamma < \beta\}$ if β is a limit ordinal.

We define **exponentiation** of ordinals by transfinite induction as follows:

- (E0) $\alpha^0 = 1$;
- (E1) $\alpha \beta^+ = \alpha\beta.\alpha$;
- (E2) $\alpha^\beta = \cup \{\alpha + \gamma \mid \gamma < \beta\}$ if β is a limit ordinal and $\alpha \neq 0$;
- (E3) $0^\beta = 0$ if β is a limit ordinal.

Examples 4:

- $\omega + 1 = \omega + 0^+ = (\omega + 0)^+ \text{ by (A1)} = \omega^+ \text{ by (A0)} \neq \omega$.
- $1 + \omega = \cup \{1 + n \mid n < \omega\} = \omega$.
- $2\omega = \cup \{2n \mid n < \omega\} \text{ by (M2)} = \omega$.
- $\omega2 = \omega1^+ = \omega1 + \omega \text{ by (M1)} = \omega0^+ + \omega = (\omega0 + \omega) + \omega \text{ by (M1)}$
- $= (0 + \omega) + \omega \text{ by (M0)} = \cup \{0 + n \mid n < \omega\} + \omega = \omega + \omega = \cup \{\omega + n \mid n < \omega\} \text{ by (A2)}$.

73
\[2^\omega = \bigcup \{ 2^n \mid n < \omega \} \] by (E2) = \omega

§10.5 Further Arithmetic of Cardinal Numbers

Theorem 12: If a, b are cardinal numbers and a is finite and b is infinite then \(a + b = b \).

Proof: Choose A, B disjoint so \(\#A = a, \#B = b \).

Let C \(\subseteq B \) such that \(\#C = \aleph_0 \) and let D = B - C. Let \(\#D = d \).

Then \(b = \aleph_0 + d \) so \(a + b = a + \aleph_0 + d = \aleph_0 + d = b \).

Theorem 13: If a is an infinite cardinal number then \(a + a = a \).

Proof: Choose A so that \(\#A = a \).

Let \(F = \{ \text{bijections } f : X \times 2 \rightarrow X \mid X \subseteq A \} \).

\(F \neq 0 \) (take X with \(\#X = \aleph_0 \)).

F is partially ordered by extension.

By Zorn’s Lemma \(\exists \) maximal \(f : X \times 2 \rightarrow X \) for some \(X \subseteq A \).

If \(A - X \) is infinite we contradict the maximality of \(f \) so \(A - X \) is finite.

\[\#X + \#X = \#X \text{ and } \#A = \#X + \#(A - X) \]

\[\#A + \#A = \#X + \#A - X + 2\#(A - X) \]

\[= \#A + \#(A - X) \]

\[= \#A. \]

Theorem 14: If \(a \leq b \) are cardinal numbers and \(b \) is infinite then \(a + b = b \).

Proof: Choose A, B with \(\#A = a, \#B = b \).

Since \(a \leq b, a + b \leq b + b = b \).

But \(b \leq a + b \) so \(a + b = b \).

Theorem 15: If a is an infinite cardinal number then \(a.a = a \).

Proof: Choose A so \(\#A = a \).

Let \(F = \{ \text{bijections } f : X \times X \rightarrow X \mid X \subseteq A \} \).

\(F \neq 0 \) (take X with \(\#X = \aleph_0 \)).

F is partially ordered by extension.

By Zorn’s Lemma \(\exists \) maximal \(f : X \times X \rightarrow X \) for some \(X \subseteq A \).

Let \(\#X = x \). Then \(x.x = x \).

Suppose \(x < a \).

Then \(\#(A - X) = a \) and so \(A - X \) has a subset, Y with \(\#Y = x \).

Then \(\#[(X \times Y) + (Y \times X) + (Y \times Y)] = 3x.x \)

\[= x \] so

there exists a bijection from \((X \times Y) + (Y \times X) + (Y \times Y)\) to Y.

We can thus extend \(f \) to a bijection \(g : (X + Y) \times (X + Y) \rightarrow X + Y \), a contradiction.

Hence \(x = a \) and so \(a.a = a \).

At long last we can define a cardinal number as a set. A **cardinal number** is simply an ordinal number that is not equivalent to any of its predecessors.
Theorem 16: The class of ordinals, C, equivalent to a set \(S \) is itself a set.

Proof: Well order \(\wp(S) \) and let \(\gamma \) be the corresponding ordinal.
Then \(\alpha \in C \rightarrow \alpha < \gamma \rightarrow \alpha \in \gamma \).
So \(C = \{ \alpha \in \gamma \mid \alpha \approx S \} \).

Now that we have established that the set of ordinals equivalent to \(S \) is a set we can define, for any set \(S \) \#S to be the smallest ordinal equivalent to \(S \). Clearly it is a cardinal number.

We are now in a position to properly define the alephs, that is, to write every infinite cardinal as \(\aleph_\gamma \) for some ordinal \(\gamma \). Let \(\gamma \) be an infinite cardinal number.
Let \(S_\gamma \) be the set of infinite cardinal numbers that are less than \(\gamma \) (less than in the sense of cardinal numbers). \(S_\gamma \) is well-ordered by \(\leq \).
Let \(\beta \) be the ordinal number of this well-ordered set.
Then we denote \(\gamma \) by \(\aleph_\beta \).

Example 5: Let \(\gamma = \aleph_\omega \). Then \(S_\gamma = \{ \aleph_0, \aleph_1, \aleph_2, \ldots \} \) with
\(\aleph_0 < \aleph_1 < \aleph_2 < \ldots \)
The ordinal number of this well-ordered set is \(\omega \), which justifies the use of the notation \(\aleph_\omega \).

Example 6: Let \(\gamma = \aleph_{\omega+1} \). Then \(S_\gamma = \{ \aleph_0, \aleph_1, \aleph_2, \ldots, \aleph_\omega \} \) with
\(\aleph_0 < \aleph_1 < \aleph_2 < \ldots < \aleph_\omega \)
The ordinal number of this well-ordered set is \(\omega + 1 \), which justifies the use of the notation \(\aleph_{\omega+1} \).

Theorem 17: If \(\alpha \) is an ordinal number and \(\#\alpha = \aleph_\beta \) then \(\aleph_\beta \leq \alpha < \aleph_{\beta+1} \).

Proof: \(\aleph_\beta \leq \alpha \) by definition of cardinals.
If \(\aleph_{\beta+1} \leq \alpha \) then \(\aleph_{\beta+1} \leq \aleph_\beta \), a contradiction.

Theorem 18: \(\gamma = \bigcup \{ \aleph_\alpha \mid \alpha < \beta \} \) is a cardinal number.

Proof: \(\gamma \) is an ordinal number.
Suppose \(\aleph_\delta = \#\gamma \) and \(\aleph_\delta < \gamma \).
Then \(\aleph_\delta \in \gamma \), so \(\aleph_\delta \in \aleph_\alpha \) for some \(\alpha < \beta \).
Then \(\aleph_\delta < \aleph_\alpha \leq \gamma \), a contradiction.

Theorem 19: \(\bigcup \{ \aleph_\alpha \mid \alpha < \beta^+ \} = \aleph_\beta \).

Proof: If \(\alpha < \beta^+ \) then \(\alpha \leq \beta \) and so \(\aleph_\alpha \subseteq \aleph_\beta \).

Theorem 20: If \(\beta \) has no predecessor then \(\bigcup \{ \aleph_\alpha \mid \alpha < \beta \} = \aleph_\beta \).

Proof: Let \(\aleph_\gamma = \bigcup \{ \aleph_\alpha \mid \alpha < \beta \} \).
For all \(\alpha < \beta \), \(\aleph_\alpha \subseteq \aleph_\beta \) and so \(\aleph_\gamma \subseteq \aleph_\beta \).
Hence \(\gamma \leq \beta \).
If \(\gamma < \beta \), \(\gamma + 1 < \beta \) so \(\aleph_{\gamma+1} \subseteq \aleph_\gamma \), a contradiction.