2. BACKGROUND

§2.1 Sets and Functions

A set is a collection of “things” called elements with \(x \in S \) indicating that \(x \) is an element of the set \(S \) (\(x \notin S \) if it is not).

A set can be described by listing its elements \(\{a, b, \ldots \} \) or by specifying a defining property \(\{x \in S \mid Px\} \) meaning the set of all \(x \in S \) for which \(Px \) is true. We often omit the “\(\in S \)” if it is understood. \(S \) is a subset of \(T \) if \(x \in S \) implies that \(x \in T \) and we denote this by \(S \subseteq T \). It is a proper subset (\(S \subset T \)) if as well \(S \neq T \).

Two sets are defined to be equal if each is a subset of the other. The empty set is \(\emptyset \).

The intersection \(S \cap T = \{x \mid x \in S \text{ and } x \in T\} \) and the union \(S \cup T = \{x \mid x \in S \text{ or } x \in T\} \).

Important sets are \(\mathbb{Z} = \text{the set of integers, } \mathbb{Q} = \text{the set of rational numbers, } \mathbb{R} = \text{the set of real numbers and } \mathbb{C} = \text{the set of complex numbers}. \)

A map (function) \(\theta : S \rightarrow T \) is a pair of sets \(S (= \text{domain}) \) and \(T (= \text{codomain}) \) together with a rule that associates with every \(x \in S \) a unique image \(x^\theta \in T \). (It is more common to write this as \(\theta(x) \) but we shall reserve that notation for polynomials.) The set of all the images of the elements of \(S \) is called the image of \(\theta \) and is written \(\text{im } \theta = \{x^\theta \mid x \in S\} \).

The map is 1-1 if \(x^0 = y^0 \) implies that \(x = y \) and onto if \(\text{im } \theta = T \).

We say that \(\theta \) fixes \(x \) if \(x^0 = x \). The identity map on a set \(S \) is the map \(1:S \rightarrow S \) which fixes every element. If \(\alpha : X \rightarrow Y \) and \(\beta : Y \rightarrow Z \) are maps we define their product \(\alpha \beta : X \rightarrow Z \) by \(x^{\alpha \beta} = (x^\alpha)^\beta \), that is apply \(\alpha \) first, then \(\beta \). (Note \(\alpha \beta \) would often be written as \(\beta \circ \alpha \).)

§2.2 Complex Numbers

Complex numbers are of the form \(z = x + iy \) where \(x, y \in \mathbb{R} \), and \(i \) is an “imaginary” number satisfying \(i^2 = -1 \). They are added and multiplied in the usual way. Writing \(z \) in the polar form \(r(\cos \theta + i \sin \theta) \) with \(r > 0 \) and \(0 \leq \theta < 2\pi \) (unique if \(z \neq 0 \)) we define the modulus of \(z \), to be \(|z| = r = \sqrt{x^2 + y^2} \) and the argument of \(z \) to be \(\arg z = \theta \). The conjugate of \(z \) is \(\bar{z} = x - iy \), so a complex number is real if and only if it is equal to its conjugate.

For \(z \neq 0 \), \(z^{-1} = \frac{z}{|z|^2} \). In particular, for complex numbers with modulus 1 (on the unit circle), \(z^{-1} = \frac{1}{z} \).

De Moivre’s Theorem says that \((\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta \) for all \(n \in \mathbb{Z} \), the first step towards justifying \(e^{i\theta} = \cos \theta + i \sin \theta \). The \(n \)’th roots of 1, \(e, e^2, \ldots, e^{n-1} \) where \(e = e^{2\pi i} \) and for \(n \geq 2 \) their sum is 0 (the sum of the zeros of \(z^n - 1 \)). In particular the cube roots of 1 are 1, \(\omega, \omega^2 \) where \(\omega = e^{2\pi i/3} = \frac{-1 + \sqrt{3} i}{2} \) and \(1 + \omega + \omega^2 = 0 \).

§2.3 Coordinate Geometry

The equation of the line passing through \((x_1, y_1)\) and \((x_2, y_2)\) is:

\[(y - y_1)(x_2 - x_1) = (x - x_1)(y_2 - y_1). \]

and the equation of the circle with centre \((x_1, y_1)\) that passes through \((x_2, y_2)\) is:

\[(x - x_1)^2 + (y - y_1)^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2. \]
§2.4 Polynomials

In the middle ages, solving polynomial equations was the main problem of algebra and solving the quintic was what inspired Galois. A polynomial over a field F is an expression of the form $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ where the coefficients $a_0, \ldots, a_n \in F$ and where x is an “indeterminate”. Coefficients of higher powers are assumed to be zero. A polynomial is usually written in the form $a(x)$ and if a quantity α (in F or a field containing F) is substituted for x the value obtained is written $a(\alpha)$. Polynomials are regarded as equal if corresponding coefficients are equal. The set of all polynomials over F is denoted by $F[x]$. Polynomials can be added and multiplied in the usual way and under these operations $F[x]$ is an integral domain, though not a field.

The above polynomial is said to have degree n if $a_n \neq 0$, in which case a_n is called the leading coefficient. (The degree of the zero polynomial is undefined.) A polynomial is monic if its leading coefficient is 1. A polynomial of degree 0 is a non-zero constant polynomial. There are special names for polynomials of low degree. Linear polynomials have degree 1, quadratics have degree 2, and the list extends to cubics, quartics and quintics. When polynomials multiply their degrees add, so degree is like a crude sort of logarithm.

The so-called Division Algorithm is actually a theorem which states that every polynomial $a(x) \in F[x]$ can be divided by a non-zero polynomial $b(x)$, giving a quotient $q(x)$ and a remainder $r(x)$ (both in $F[x]$) where the remainder is either zero or has lower degree than $b(x)$, that is $a(x) = b(x)q(x) + r(x)$. A simple consequence is the Remainder Theorem which states that the remainder on dividing $a(x)$ by $x - \alpha$ is $a(\alpha)$.

A zero of a polynomial $a(x)$ is a number α for which $a(\alpha) = 0$. Any non-real zeros of a real polynomial come in conjugate pairs. Real polynomials of odd degree have at least one real zero (by continuity). More generally, the Fundamental Theorem of Algebra states that every non-constant polynomial over \mathbb{C} has a zero in \mathbb{C}.

If the remainder on dividing $a(x)$ by $b(x)$ is zero we say that $b(x)$ divides $a(x)$. Divisibility properties of polynomials are very similar to those of integers. In particular we define a non-constant polynomial to be prime if it cannot be written as a product of polynomials of lower degree. (The constant polynomials are excluded for technical reasons, similar to those that exclude the number 1 from being called a prime.)

We define the greatest common divisor of two non-zero polynomials $a(x), b(x)$ to be the monic polynomial of highest degree which divides both of them. We denote it by $\text{GCD}[a(x), b(x)]$ and if the GCD is 1 we say that the polynomials are coprime. As with integers there is a method for computing the GCD called the Euclidean Algorithm. This involves dividing one polynomial by another and then repeatedly dividing the most recent remainder by the one before. Eventually we get a zero remainder and the last non-zero remainder, made monic, is the GCD. A consequence of this algorithm is the fact that the GCD of $a(x)$ and $b(x)$ can be expressed in the form $a(x)h(x) + b(x)k(x)$ for some polynomials $h(x), k(x)$ over the same field.

The quadratic formula, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ for the quadratic $ax^2 + bx + c$ expresses the zeros in terms of its coefficients using the operations $+, -, \times, \div$ and extraction of roots (radicals). As we will see, there are similar (though more complicated) formulae for cubic and quartic polynomials. but not for quintics and beyond.
In the following table we set out the parallel between integers and polynomials.

<table>
<thead>
<tr>
<th>INTEGERS</th>
<th>POLYNOMIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division Algorithm: If (a, b \in \mathbb{Z}) with (b \neq 0) there exist (q, r \in \mathbb{Z}) such that (a = bq + r) and (</td>
<td>r</td>
</tr>
<tr>
<td>(b) divides (a) if (a = bq) for some (q \in \mathbb{Z}). Notation: (b \mid a).</td>
<td>(b(x)) divides (a(x)) if (a(x) = b(x)q(x)) for some (q(x) \in \mathbb{F}[x]). Notation: (b(x) \mid a(x)).</td>
</tr>
<tr>
<td>(D(a) = {\text{divisors of } a}).</td>
<td>(D(a(x)) = {\text{divisors of } a(x)}).</td>
</tr>
<tr>
<td>(D(a) \cap D(b)) is the set of common divisors of (a, b).</td>
<td>(D(a(x)) \cap D(b(x))) is the set of common divisors of (a(x), b(x)).</td>
</tr>
<tr>
<td>A greatest common divisor of (a, b) is a common divisor of (a, b) with greatest absolute value.</td>
<td>A greatest common divisor of (a(x), b(x)) is a common divisor of (a(x), b(x)) with greatest degree.</td>
</tr>
<tr>
<td>(u) is a unit if (u^{-1} \in \mathbb{Z}). The units are (\pm 1).</td>
<td>(u(x)) is a unit if ((u(x))^{-1} \in \mathbb{F}[x]). The units are the non-zero constant polynomials.</td>
</tr>
<tr>
<td>(a, b) are associates if (a = bu) for some unit (u), or equivalently if they divide each other or equivalently if (a = \pm b).</td>
<td>(a(x), b(x)) are associates if (a(x) = b(x)u(x)) for some unit (u(x)), or equivalently if they divide each other or equivalently if (a(x) = \pm b(x)).</td>
</tr>
<tr>
<td>Any two greatest common divisors of (a, b) are associates of one another. THE greatest common divisor is the positive one. Notation: (\text{GCD}(a, b)).</td>
<td>Any two greatest common divisors of (a(x), b(x)) are associates of one another. THE greatest common divisor is the monic one. Notation: (\text{GCD}(a(x), b(x))).</td>
</tr>
<tr>
<td>If (d = \text{GCD}(a, b)) then (d = ah + bk) for some (h, k \in \mathbb{Z}).</td>
<td>If (d(x) = \text{GCD}(a(x), b(x))) then (d(x) = a(x)h(x) + b(x)k(x)) for some (h(x), k(x) \in \mathbb{F}[x]).</td>
</tr>
<tr>
<td>(p) is prime if (</td>
<td>p</td>
</tr>
<tr>
<td>(n) is composite if it is not zero, not a unit and not prime.</td>
<td>(f(x)) is composite if it is not zero, not a unit and not prime.</td>
</tr>
<tr>
<td>If a prime integer divides a product it must divide one of the factors.</td>
<td>If a prime polynomial divides a product it must divide one of the factors.</td>
</tr>
<tr>
<td>Every composite integer can be factorised uniquely into primes. (Uniqueness means that the factors can be paired so that corresponding prime factors are associates.)</td>
<td>Every composite polynomial can be factorised uniquely into primes. (Uniqueness means that the factors can be paired so that corresponding prime factors are associates.)</td>
</tr>
</tbody>
</table>

We do not provide proofs here for any of the above results, though the proofs for polynomials are easily adapted from the proofs of the corresponding results for integers. The most satisfactory thing to do, if we had the time, would be to develop the theory of a certain type of ring called a **Euclidean ring**. These rings include the ring of integers and polynomials over a field, as well as many other examples. The above definitions and properties would then just become particular instances of the general theory.
§2.5 Calculus
Real variable calculus studies real functions, that is, functions from \(\mathbb{R} \) to \(\mathbb{R} \). We refer to the closed interval \([a, b] = \{x \mid a \leq x \leq b\}\) and the open interval \((a, b) = \{x \mid a < x < b\}\).

If \(f : \mathbb{R} \rightarrow \mathbb{R} \) we say that \(L \) is the limit of \(f(x) \) as \(x \rightarrow a \) if, for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(|x - a| < \delta \) implies that \(|f(x) - L| < \varepsilon \). We say that \(f \) is continuous at \(x = a \) if the limit of \(f(x) \) as \(x \rightarrow a \) is \(f(a) \) and that \(f \) is differentiable at \(x = a \) if the limit of \(\frac{f(x) - f(a)}{x - a} \) as \(x \rightarrow a \), exists. We call this limit \(f'(x) \) and the function \(f' \) is called the derivative of \(f \) (with respect to \(x \)). We say that \(f \) is continuous or differentiable if it has the property at every point. Differentiability implies continuity and polynomials have both properties.

Intermediate Value Theorem: If \(f(x) \) is a continuous function on the closed interval \([a,b]\) then if \(f(a) < 0 < f(b) \) we must have \(f(c) = 0 \) for some \(c \) with \(a < c < b \).

Of course a similar result holds if \(f(a) > 0 > f(b) \).

Rolle’s Theorem: If \(f(x) \) is differentiable on the open interval \((a,b)\) and continuous on the closed interval \([a,b]\) then if \(f(a) = 0 = f(b) \) we must have \(f'(c) \) for some \(c \) with \(a < c < b \).

§2.6 Groups
Galois invented group theory for the purpose of answering the question “which polynomials have zeros that can be expressed in terms of of its coefficients using the operations +, −, \(\times \), \(\div \) and extraction of roots?” A group is an algebraic structure \(G \) with an associative operation (which we shall usually called multiplication) under which \(G \) is closed, and where there is an identity element, denoted by 1, with respect to which every element of \(G \) has an inverse. The trivial group is \{1\}. An abelian group is one which satisfies the commutative law. The order of a finite group \(G \) is \(|G|\), the number of elements of \(G \).

A subgroup is a non-empty subset which is closed under multiplication and inverses. Notation: \(H \leq G \). Powers are defined in the usual way and the cyclic subgroup generated by \(g \) is \(\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\} \). A group is cyclic if it is \(\langle g \rangle \) for some \(g \in G \), called a generator. Cyclic groups are abelian. The order of a group \(G \) is its size \(|G|\) and the order of an element \(g \) is the order of the subgroup \(\langle g \rangle \).

If \(H \leq G \) a left coset is a set of the form \(xH = \{xh \mid h \in H\} \) and a right coset is one of the form \(Hx = \{hx \mid h \in H\} \). The group \(G \) decomposes into a disjoint union of cosets of either type from which it follows that the order of a subgroup (and hence the order of an element) of a finite group \(G \) divides \(|G|\).

If \(Hx = xH \) for all \(x \in G \) we say that \(H \) is a normal subgroup of \(G \) and in such cases we can form a group, called the quotient group \(G/H \), from these cosets with the coset \(H \) as its identity. A simple group is one with no proper non-trivial normal subgroup.

The cyclic group of order \(n \) is denoted by \(C_n \). The dihedral group \(D_{2n} \) (of order \(2n \)) can be expressed in terms of generators and relations by \(\langle A, B \mid A^n = B^2 = 1, BA = A^{-1}B \rangle \) with \(D_4 \) more usually written \(V_4 \). \(D_{2n} \) is non-abelian iff \(n > 2 \). Groups of prime order are cyclic and groups of order \(2p \) must be cyclic or dihedral.

A group homomorphism is a map \(f : G \rightarrow H \), from one group to another which preserves products and an isomorphism is a 1-1 and onto homomorphism. If an isomorphism exists between \(G \) and \(H \) we say that \(G, H \) are isomorphic and we write \(G \cong H \).
The kernel of a homomorphism \(f = \ker f = \{ g \in G \mid g^f = 1 \} \) and the image of \(f \) is \(\text{im} f = \{ g^f \mid g \in G \} \).

The First Isomorphism Theorem states that \(\ker f \) is a normal subgroup of \(G \), \(\text{im} f \) is a subgroup of \(H \) and \(G/\ker f \cong \text{im} f. \) Consequences are:

Second Isomorphism Theorem: if \(H, K \subseteq G \) with \(K \) being normal, then \(HK/K \cong H/(H \cap K); \)

Third Isomorphism Theorem: if \(H \subseteq K \subseteq G \) with both \(H, K \) being normal in \(G \), then \((G/H)/(G/K) \cong K/H. \)

A commutator is an element of the form \([x, y] = x^{-1}y^{-1}xy\). The derived subgroup of a group \(G \) is \(G' = \text{subgroup generated by all the commutators}. \) A useful characterisation of \(G' \) is that it is the smallest normal subgroup for which the quotient is abelian. The derived series is \(G \geq G' \geq G'' \geq \ldots \) and if this series reaches 1 we say that \(G \) is soluble.

If \(p^n \) divides \(|G| \), where \(p \) is prime and \(G \) is a finite group, then \(G \) has a subgroup of order \(p^n \). In particular if \(p^n \) is the largest power of \(p \) which divides \(|G| \) then such a subgroup is called a Sylow p-subgroup.

The direct sum of abelian groups \(G_1, \ldots, G_k \) is:
\[
G_1 \oplus \ldots \oplus G_k = \{(x_1, \ldots, x_k) \mid \text{each } x_i \in G_i\} \text{ with point-wise addition.}
\]

Every finite abelian group is a direct sum of cyclic groups of prime power order.

§ 2.7 Permutations

For Galois, all groups were groups of permutations on the zeros of polynomials. A permutation on a set \(X \) is a 1-1 map from \(X \) to itself. The most efficient notation is cycle notation: \((x_1 x_2 \ldots x_i)(y_1 \ldots y_j) \ldots\) where each symbol maps to the one on its right, except for the last in each cycle which maps to the first. Cycles of length 1 are omitted, except for the identity permutation which is denoted by I. The symmetric group \(S_n \) is the set of all \(n! \) permutations on \{1, 2, ..., n\} under multiplication of functions.

An \(n \)-cycle is a permutation of the form \((x_1 \ldots x_n)\) and a transposition is a 2-cycle. Every permutation is a product of cycles and each \(n \)-cycle is a product of \(n-1 \) transpositions so every permutation is a product of transpositions. An even (odd) permutation is one which is a product of an even (odd) number of transpositions and no permutation can be both, so cycles of odd length are even. Permutations satisfy the rules:

\[
\text{even } \times \text{ even } = \text{ even, even } \times \text{ odd } = \text{ odd, odd } \times \text{ odd } = \text{ even.}
\]

The alternating group \(A_n \) is the subgroup of \(S_n \) consisting of the even permutations.

For \(n \geq 5 \), \(A_n \) is simple and so \(A_5 \) and \(S_5 \) are not soluble for these \(n \).

§ 2.8 Fields and Rings

The modern view of Galois Theory is that it is the study of fields using group theory as a tool, though the concept of a field came much later than Evaristé Galois (1811-1832). A field is an algebraic system which consists of a set \(F \), together with two binary operations + and \(\times \) such that \(F \) is an abelian group under addition, \(F^\# \), the non-zero elements, are an abelian group under multiplication and such that the distributive law holds.

Familiar examples are \(\mathbb{Q}, \mathbb{R} \) and \(\mathbb{C} \). There are also finite fields, of which the simplest are the fields, \(\mathbb{Z}_p \), of integers modulo a prime. A subfield of a field is a subset which is a field under the same operations, so \(\mathbb{Q} \) and \(\mathbb{R} \) are examples of subfields of \(\mathbb{C} \).

A ring is a more general structure, again with two operations of addition and multiplication where the distributive law holds. But whereas the ring must be an abelian group under addition the only requirements for multiplication are closure and the associative
law. The ring of integers, \(\mathbb{Z} \), is a commutative ring and the ring \(M_n(F) \) of all \(n \times n \) matrices over \(F \) is an example of a non-commutative ring.

An **integral domain** is a commutative ring in which the cancellation law holds. That is, if \(xy = 0 \) then \(x = 0 \) or \(y = 0 \).

§2.9 **Vector Spaces**

A **vector space** over a field \(F \) is a set \(V \) together with two operations: addition and multiplication by a **scalar** (element of \(F \)). Under addition a vector space must be an abelian group. Additional axioms involving scalar multiplication are:

\[
\lambda v \in V, (\lambda + \mu)v = \lambda v + \mu v, \lambda(u + v) = \lambda u + \lambda v, (\lambda \mu) = \lambda (\mu v) \quad \text{and} \quad 1v = v.
\]

A **subspace** is a subset that is a vector space under the same operations. Notation: \(U \leq V \).

We tend to think of vectors as having components, such as \((x, y, z) \) and as such are quite distinct from scalars. However the axioms don’t insist on this. By comparing the axioms for fields and vector spaces we can see that fields can be viewed as vector spaces over subfields, in which case the elements of the subfield will be both a vector and a scalar.

A **linear combination** of vectors \(v_1, v_2, ... v_n \) is an expression of the form \(\lambda_1v_1 + \cdots + \lambda_nv_n \) where the \(\lambda \)'s are scalars and the \(v_i \)'s are vectors. It is **non-trivial** if at least one \(\lambda_i \neq 0 \). A set of vectors \(X \) spans a vector space if every vector in the space is a linear combination of the vectors in \(X \) and it is **linearly independent** if no non-trivial linear combination is zero (otherwise it is **linearly dependent**). A **basis** for \(V \) is a linearly independent subset which also spans \(V \). A vector space is **finite-dimensional** if it has a finite spanning set. Every finite-dimensional vector space \(V \) has a basis and all bases have the same size, called the **dimension** of \(V \) (or \(\dim V \)). Any subset smaller than \(\dim V \) can’t span \(V \) and any set bigger than \(\dim V \) must be linearly dependent.

A **linear transformation** \(f:U \to V \), from one vector space over \(F \) to another, is a map which preserves addition and scalar multiplication. The **kernel** of \(f \) (\(\ker f \)) = \(\{v \in V| v^f = 0\} \) and the **image** (\(\text{im } f \)) = \(\{v^f| v \in V\} \) are subspaces of \(U, V \) respectively and the sum of their dimensions is \(\dim U \) (rank + nullity = ...).

EXERCISES FOR CHAPTER 2

Exercise 1: If \(S = \{1, 2, 4, 5\} \) and \(T = \{1, 3, 4, 6\} \) write down \(S \cap T \).

Exercise 2: How many proper non-empty subsets are there of \(\{1, 3, 4\} \).

Exercise 3: Is the map \(0: \{x \in \mathbb{R} | x > 0\} \to \mathbb{Z} \) defined by \(x^0 = \text{INT}(\log x) \) a 1-1 function? Is it onto? Here INT means the integer part.

Exercise 4: If \(f: \mathbb{R} \to \mathbb{R} \) and \(g: \mathbb{R} \to \mathbb{R} \) are defined by \(x^f = x^2 \) and \(x^g = 2^x \) find \(3^g \) and \(3^f \).

Exercise 5: Write down the fixed points of \(f: \mathbb{R} \to \mathbb{R} \) defined by \(x^f = x^2 - 4x + 6 \).

Exercise 6: Find the modulus, conjugate and inverse of the complex number \(i - 2 \).

Exercise 7: Simplify \(\omega + \omega^2 \).
Exercise 8: Write down all five fifth roots of 1 in terms of $\varepsilon = e^{2\pi i/5}$.

Exercise 9: If $\varepsilon = e^{2\pi i/7}$ find the conjugate of ε^3 as a power of ε.

Exercise 10: Which real number(s) can be expressed as a sum of two cube roots of 1?

Exercise 11: If $A = (1, -3)$ and $B = (3, 5)$ find the equations of the line through A, B and the circle with centre A which passes through B.

Exercise 12: Is $F = \{a + bi \mid a, b \in \mathbb{Q}\}$ a field?

Exercise 13: Is $F = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ a field?

Exercise 14: Is $\{(2, 1), (4, 2)\}$ a basis for \mathbb{R}^2?

Exercise 15: Are the vectors $(1, 1), (2, 5), (3, 17)$ linearly independent?

Exercise 16: If $f: \mathbb{R}^7 \to \mathbb{R}^3$ is a linear transformation whose image is $\{(x, y, x + y) \mid x, y, z \in \mathbb{R}\}$ find the dimension of $\ker f$.

Exercise 17: Find the zeros, over \mathbb{Q}, of the polynomial $x^2 + 5x + 6$.

Exercise 18: “The polynomial $x^5 + 17x^4 - 33x + 2$ has exactly 2 real zeros and 3 non-real zeros.” Why must this statement be false?

Exercise 19: “The polynomial $x^4 - 3x^7 + 32$ has four non-real zeros and no real ones.” Why must this claim be false?

Exercise 20: If a real polynomial $f(x)$ has a non-real zero α, find a real quadratic factor.

Exercise 21: Which real polynomials over \mathbb{R} are prime over \mathbb{R}?

Exercise 22: Find the GCD($x^3 + 1, x^2 + 2x + 1$) and express it in the form
$$(x^3 + 1)h(x) + (x^2 + 2x + 1)k(x)$$
for suitable rational polynomials $h(x), k(x)$.

Exercise 23: If G is the group $\langle A, B \mid A^4 = B^2 = 1, BA = A^{-1}B \rangle$ what is $|G|$?

Exercise 24: What is the order of the complex number i under multiplication?

Exercise 25: Write down a proper non-trivial subgroup of the cyclic group generated, under multiplication, by the complex number i.

Exercise 26: “The group G has order 100 and has 5 subgroups of order 6”. Why must this statement be false?

Exercise 27: If $|G| = 17$, find all the subgroups of G.

19
Exercise 28: For which of the following values of \(n \): 3, 4, 5, 6, 7, 8 is there a cyclic group of order \(n \). For which of these values of \(n \) is there no other group of order \(n \)?

Exercise 29: The group \(G = \{1, 3, 7, 9, 11, 13, 17, 19\} \) is a group under multiplication modulo 20 and \(H = \{1, 11\} \) is a normal subgroup. Find the cosets of \(H \) in \(G \). Which of the groups \(C_4 \) and \(C_2 \times C_2 \) is isomorphic to \(G/H \)?

Exercise 30: Let \(f : \mathbb{R}^\# \to \mathbb{R} \) be defined by \(x^f = \log(x^2) \), where \(\mathbb{R} \) is the group of all real numbers under addition and \(\mathbb{R}^\# \) is the group of all non-zero real numbers under multiplication. Show that \(f \) is a homomorphism and find \(\ker f \) and \(\text{im } f \). Hence find a quotient group of \(\mathbb{R}^\# \) which is isomorphic to \(\mathbb{R} \).

Exercise 31: Which abelian groups are soluble?

Exercise 32: If |\(G' \)| = 4, why must \(G \) be soluble?

Exercise 33: Why is \(D_{60} \) a soluble group?

Exercise 34: “The group \(G \) has order 80 and only 4 proper non-trivial subgroups.” Why must this statement be false?

Exercise 35: What is the orders of the Sylow subgroups of a group of order 1125?

Exercise 36: If \(a = (1 \ 2 \ 3 \ 4 \ 5) \) and \(b = (1 \ 2) \), find \((ab)^{-2}b(ab)^2 \).

Exercise 37: Is \((1 \ 2 \ 3 \ 4)(5 \ 6 \ 7)(8 \ 9) \in A_9 \)?

Exercise 38: \(A_4 \) has a normal abelian subgroup \(V_4 \) of order 4. Why does it follow that \(S_4 \) soluble?

Exercise 39: For which values of \(n \) is \(S_n \) soluble?

Exercise 40: If \(a = (1 \ 4 \ 5 \ 2 \ 3 \ 7 \ 6) \) and \(b = (2 \ 7) \) find the order of the group they generate.

SOLUTIONS FOR CHAPTER 2

Exercise 1: \(S \cap T = \{1, 4\} \).

Exercise 2: 6.

Exercise 3: It is neither.

Exercise 4: \(3^{fg} = 2^9 \) and \(3^{gf} = 2^6 \).

Exercise 5: These are the values of \(x \) for which \(x^2 - 4x + 6 = x \), namely 2, 3.
Exercise 6: The modulus is $\sqrt{5}$, the conjugate is $-i - 2$ and the inverse is $\frac{-2 + i}{5}$.

Exercise 7: -1.

Exercise 8: $1, \varepsilon, \varepsilon^2, \varepsilon^3, \varepsilon^4$.

Exercise 9: ε^4.

Exercise 10: 2 and -1.

Exercise 11: The equation of AB is $\frac{y + 3}{x - 1} = \frac{5 + 3}{3 - 1} = \frac{8}{2} = 4$, which simplifies to $y = 4x - 7$.
The equation of the circle is $(x - 1)^2 + (y + 3)^2 = (3 - 1)^2 + (5 + 3)^2 = 68$.
This simplifies to $x^2 + y^2 - 2x + 6y - 58 = 0$.

Exercise 12: YES. Since $\frac{1}{a + bi} = \frac{a - bi}{a^2 + b^2} \in F$ if $a + bi \neq 0$, it satisfies the property that every non-zero element has a multiplicative inverse. The other field properties are obvious.

Exercise 13: NO because $(\sqrt{2})^2 \notin F$.

Exercise 14: NO. They are not linearly independent.

Exercise 15: NO. The space of vectors (x, y) has dimension 2 and so any more than 2 vectors will be automatically linearly dependent.

Exercise 16: The rank of f is the dimension of the image. It is clearly 2.
The nullity is therefore $7 - 2 = 5$. This is the dimension of ker f.

Exercise 17: $-2, -3$.

Exercise 18: Non-real zeros of a real polynomial come in conjugate pairs and hence there must always be an even number of them.

Exercise 19: It has degree 7. Since 7 is odd the polynomial must have a real zero.

Exercise 20: The conjugate $\bar{\alpha}$ must also be a zero and hence $(x - \alpha)(x - \bar{\alpha})$ must be a real quadratic factor. This can be written as $x^2 - 2\text{Re}(\alpha) + |\alpha|^2$.

Exercise 21: Linear polynomials, of the form $ax + b$ (where $a \neq 0$) and quadratics of the form $ax^2 + bx + c$ where $b^2 < 4ac$. (Note that this automatically includes the condition that $a \neq 0$.)
Exercise 22:

\[
\frac{x - 2}{x^2 + 2x + 1} \cdot \frac{x^3 + 2x + x}{x^3 + 2x^2 + x - 2x^2 - x + 1 - 2x^2 - 4x - 2} \quad \frac{3x + 3}{x + 1}
\]

Replace this by \(x + 1 \). Clearly \(x^2 + 2x + 1 = (x + 1)^2 \), with a remainder of zero, so the last non-zero remainder, made monic, is \(x + 1 \).

From the above, \(3x + 3 = (x^3 + 1) - (x^2 + 2x + 1)(x - 2) \)

Hence we can take \(h(x) = \frac{1}{3} \) and \(k(x) = \frac{1}{3} (x - 2) \).

Exercise 23: 8.

Exercise 24: 4.

Exercise 25: \(\{1, -1\} \).

Exercise 26: 6 does not divide 100, so this contradicts Lagrange’s Theorem.

Exercise 27: Just 1 and \(G \) because 17 is prime.

Exercise 28: All of them. None of them.

Exercise 29: \(H = \{1, 11\}, 3H = \{3, 13\}, 7H = \{7, 17\}, 9H = \{9, 19\}. \)

\((3H)^2 = 9H \neq H \) so 3H has order 4. This means that \(G/H \cong C_4 \).

Exercise 30: \((xy)^f = \log((xy)^2) = \log(x^2y^2) = \log(x^2) + \log(y^2) = x^f + y^f \).

\(\ker f = \{ x \in \mathbb{R^f} \mid \log(x^2) = 0 \} = \{ x \in \mathbb{R^f} \mid x^2 = 1 \} = \{1, -1\} \).

\(\text{im } f = \mathbb{R} \).

Hence \(\mathbb{R}^f / \{1, -1\} \cong \mathbb{R} \).

Exercise 31: All of them.

Exercise 32: Groups of order 4 are abelian and so \(G'' = 1 \).

Exercise 33: \(D_{60} = \langle a, b \mid a^{30} = b^2 = 1, b^{-1}ab = a^{-1} \rangle \).

Let \(H = \langle a \rangle \). Then \(D_{60}/H \) has order 2 and so \(D_{60}' \leq H \). But \(H \) is abelian, so \(D_{60}'' = 1 \).

Exercise 34: By Sylow’s Theorem there exists a subgroup of order \(p^n \) when ever the prime power \(p^n \) divides the group order. Hence \(G \) has subgroups of orders 2, 4, 8, 16 and 5.

Exercise 35: 1125 = \(3^2 \cdot 5^3 \). So the Sylow 3-subgroups have order 9 and the Sylow 5-subgroups have order 125.
Exercise 36: \(ab = (2 \ 3 \ 4 \ 5) \) and so \((ab)^2 = (2 \ 4)(3 \ 5) \).
Hence \((ab)^{-2}b(ab)^2 = [(2 \ 4)(3 \ 5)]^{-1}(1 \ 2)[(2 \ 4)(3 \ 5)] = (1 \ 4) \).

Exercise 37: YES. It is an even permutation.

Exercise 38: \(|S_4/A_4| = 2\) so \(S_4' \leq A_4\).
\(|A_4/V_4| = 3\) so \(A_4/V_4\) is cyclic and hence abelian, so \(S_4''' \leq A_4' \leq V_4\).
Since groups of order 4 are abelian, \(S_4''' \leq V_4' = 1\).

Exercise 39: \(n = 1, \ 2, \ 3 \) and 4.

Exercise 40: They generate \(S_7\), which has order \(7! = 5040\).