These notes were prepared for students at Macquarie University in Australia but are freely available to anyone. However if you make use of them and are not a Macquarie University student it would be nice if you could email me at christopher.cooper@mq.edu.au to let me know where you are from. And, if you are from outside of Australia perhaps you could send me a postcard of where you are from to pin up on my wall (Christopher Cooper, Department of Mathematics, Macquarie University, NSW 2109, Australia).
INTRODUCTION

The name “algebra” is derived from the Arabic “al-jabr”, meaning “restoration”. It builds on arithmetic. Instead of carrying out the arithmetic operations of addition, subtraction, multiplication and division with numbers, we include symbols that represent numbers.

The advantage of using symbols is two-fold. Firstly there are many arithmetic facts that are very similar and we can condense infinitely many statements about numbers into a single algebraic one. For example, instead of saying that “1 + 2 = 2 + 1 and 2 + 3 = 3 + 2 and 5 + 8 = 8 + 5, and so on, we can simply say that x + y = y + x for all numbers x and y. Here the symbols are being used as variables.

The second advantage of using symbols is that we may not know a certain number, but we have information about it from which we can eventually discover the number. This is called “solving an equation” and in this context the symbol is said to represent an “unknown”.

These notes are pitched at a level above that which would be appropriate when one was meeting algebra for the first time and are not recommended as a school text. They are designed for students at university whose mathematical background is insufficient.

In chapter 1 we discuss numbers, just “real” numbers at this stage – those that live on the number line. And we discuss the basic algebra of real numbers. Chapter 2 discusses inequalities and absolute values. Then come chapters on induction, finite series and the Binomial theorem. Another couple of chapters deal with the exponential, logarithmic functions that are so useful, both for algebra and for calculus.

At this point we leave the real numbers and its associated algebra, to explore three very important systems: complex numbers, which behave like the real numbers, only better, polynomials and then matrices, which requires a whole new look at algebra.

Finally we discuss systems of equations – just two equations in two variables and three equations in three variables, and hint as to why further knowledge of matrices might be useful if we wanted to go beyond three variables.
CONTENTS

1. REAL NUMBERS
1.1 Symbols Representing Numbers .. 5
1.2 The Laws of Algebra .. 7
1.3 Basic Algebraic Identities .. 10
1.4 Solving Linear Equations .. 11
1.5 Fractions ... 11

2. INEQUALITIES AND ABSOLUTE VALUES
2.1 The Ordering of the Real Numbers ... 15
2.2 Inequalities ... 16
2.3 Intervals .. 17
2.4 Absolute Value .. 18

3. INDUCTION AND FINITE SERIES
3.1 Mathematical Induction ... 19
3.2 Arithmetic Series .. 21
3.3 Geometric Series .. 22
3.4 Sigma Notation ... 24
Exercise for Chapter 3 .. 25
Solution for Chapter 3 .. 25

4. THE BINOMIAL THEOREM
4.1 Number of Choices ... 27
4.2 Pascal’s Triangle ... 29
4.3 The Binomial Theorem ... 30
4.4 Binomial Probability ... 30
Exercises for Chapter 4 .. 32
Solutions for Chapter 4 .. 32

5. LOGS AND EXPONENTIAL FUNCTIONS
5.1 Powers .. 35
5.2 What Do We Mean By 2^x? ... 35
5.3 Logarithms ... 36
5.4 Powers and Logarithms on Calculators ... 39
6. POLYNOMIALS
6.1 Definition of a Polynomial ... 41
6.2 Degree of a Polynomial ... 42
6.3 Addition and Multiplication of a Polynomial 42
6.4 Division and Remainder ... 43
6.5 Substitution and the Remainder Theorem 44
6.6 Zeros of Polynomials ... 45
6.7 Quadratic Equations .. 45
6.8 Sum and Product of Roots ... 47
Exercises for Chapter 6 ... 48
Solutions for Chapter 6 ... 49

7. MATRICES AND LINEAR EQUATIONS
7.1 Definition of a Matrix .. 53
7.2 Adding and Subtracting Matrices ... 54
7.3 Matrix Multiplication ... 55
7.4 Two Equations in Two Variables ... 59
7.5 Geometric Interpretation ... 59
7.6 Three Equations in Three Variables .. 60
7.7 Systems of Linear Equations and Matrices 61
Exercises for Chapter 7 ... 62
Solutions for Chapter 7 ... 62